-
公开(公告)号:CN112598934A
公开(公告)日:2021-04-02
申请号:CN202011558568.7
申请日:2020-12-25
Applicant: 桂林电子科技大学
Abstract: 本发明公开了基于北斗定位及无线组网的无人机侦测系统及侦测方法,所述装置包括一组结构相同的单节点阵列,其中,每个单节点包括顺序连接的数据采集传输及识别模块、北斗定位及组网模块、管控及反击模块,数据采集传输及识别模块设有接收天线,管控及反击模块设有发射天线,发射天线连接可调节功率的信号功率放大器。所述方法包括:1)数据采集存储及传输;2)信号识别;3)目标定位;4)无线组网连接;5)GPS诱骗信号生成;6)诱骗信号发送。这种系统成本低、探测范围广。这种方法准确率高、实时性强。
-
公开(公告)号:CN111652183A
公开(公告)日:2020-09-11
申请号:CN202010565503.9
申请日:2020-06-19
Applicant: 桂林电子科技大学
Abstract: 本发明公开了基于图传信号多特征融合的无人机检测与识别方法,其特征在于,包括如下步骤:1)信号采集;2)分段信号FFT处理;3)分段频谱重建;4)信号累积;5)阈值建立;6)循环判断;7)疑似OFDM信号判断;8)滑动移位循环自相关算法;9)建立特征库10)信号识别。这种方法能够在低信噪比下对无人机进行识别,具有较高的识别率,易于实际工程。
-
公开(公告)号:CN111639595A
公开(公告)日:2020-09-08
申请号:CN202010473731.3
申请日:2020-05-29
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于权重不可知神经网络的无人机微动特征信号检测方法,其特征是,包括如下步骤:1)计算信号的循环谱;2)通过MATLAB处理得到循环谱等高图,并选择观测区域;3)训练权重不可知神经网络;4)利用训练好的权重不可知神经网络进行微动特征识别。这种方法有很好的抗干扰性,神经网络的结构更简单,计算量更小,对无人机微动特征信号识别的准确率更高。
-
公开(公告)号:CN111628833A
公开(公告)日:2020-09-04
申请号:CN202010523557.9
申请日:2020-06-10
Applicant: 桂林电子科技大学
IPC: H04B17/10 , H04B17/20 , H04B7/0413 , G06N3/04 , G06N3/08
Abstract: 本发明公开了基于卷积神经网络的MIMO天线数目估计方法,包括合作通信方的MIMO天线系统和第三方非合作通信接收方,其中,合作通信MIMO天线系统双方采用多天线发射和接收信号,非合作方采用单天线接收信号,非合作接收方包括如下步骤:1)信号的分类打包;2)模型构建;3)训练;4)测试;5)评价;6)调整。这种方法能提高对MIMO发射天线数目的估计准确率。
-
公开(公告)号:CN114553364B
公开(公告)日:2024-11-01
申请号:CN202210189825.7
申请日:2022-02-28
Applicant: 桂林电子科技大学
IPC: H04K3/00 , G06F18/241 , G06N3/063
Abstract: 本发明公开了一种基于PYNQ的无人机识别系统及识别方,所述无人机识别系统采用信号接收装置接收待识别无人机信号,将信号通过RJ45接口传送给PYNQ‑Z2,从接收到的射频信号中提取三阶累积量,作为每台无人机唯一的射频指纹特征,基于得到的无人机射频指纹特征,使用神经网络对射频指纹特征进行分类,利用神经网络加速IP核进行加速计算,可以对需要进行认证的无人机身份进行实时识别和认证。
-
公开(公告)号:CN114239749B
公开(公告)日:2024-04-05
申请号:CN202111593241.8
申请日:2021-12-23
Applicant: 桂林电子科技大学
IPC: G06F18/214 , G06N3/0442 , G06N3/049 , G06N3/084
Abstract: 本发明公开了一种基于残差收缩及双向长短期记忆网络的调制识别方法,其特征在于,包括如下步骤:1)信号预处理;2)构建基于残差收缩及双向长短期记忆网络训练模型;3)训练网络;4)分类识别。这种方法训练特征参数少、步骤简洁、复杂度低,无需对信号进行复杂的预处理及人工特征提取,省去了人为提取特征的时间成本,适用范围广、抗噪性能好、识别精度高。
-
公开(公告)号:CN114218984B
公开(公告)日:2024-03-22
申请号:CN202111488160.1
申请日:2021-12-07
Applicant: 桂林电子科技大学
IPC: G06F18/241 , G06F18/2131 , G06F18/25 , G06N3/0464 , G06N3/045 , G06N3/08
Abstract: 本发明公开了一种基于多视图学习的射频指纹识别方法,其特包括如下步骤:1)采集每个待识别无线设备射频信号;2)数据处理并加噪声;3)分割数据并制作数据集一、二和三;4)设计复数值神经网络子组件并搭建复数值神经网;5)搭建子神经网络一6)搭建二维卷积神经网络二、三;7)合成多视图神经网络;8)训练神经网络;9)射频指纹识别。这种方法能利用样本数据并让计算机自动提取信号指纹特征,对样本数量要求降低的同时能改善低信噪比时的识别精度,数据特征提取效率高识别精度高。
-
公开(公告)号:CN112087774B
公开(公告)日:2023-04-18
申请号:CN202010961558.1
申请日:2020-09-14
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于残差神经网络的通信辐射源个体识别方法,其特征在于,包括如下步骤:1)接收通信辐射源信号;2)计算信号的双谱;3)实际信号双谱非参数间接估计;4)获得双谱等高图;5)训练残差网络;6)采用训练好的残差神经网络检测识别不同的通信辐射源。这种方法能减少信号噪声干扰、计算量小、识别的准确率高。
-
公开(公告)号:CN113162879B
公开(公告)日:2022-06-21
申请号:CN202110479674.4
申请日:2021-04-30
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种联合特征提取的调制信号识别方法,其特征在于,包括如下步骤:1)信号接收;2)信号预处理;3)特征参数提取;4)设置判决门限;5)分类识别。这种方法所需特征参数少、步骤简洁、复杂度低,在低信噪比下识别率高且能弥补高阶累计量单一特征的局限,适用于多种不同类型的调制信号识别。
-
公开(公告)号:CN111652183B
公开(公告)日:2022-03-29
申请号:CN202010565503.9
申请日:2020-06-19
Applicant: 桂林电子科技大学
Abstract: 本发明公开了基于图传信号多特征融合的无人机检测与识别方法,其特征在于,包括如下步骤:1)信号采集;2)分段信号FFT处理;3)分段频谱重建;4)信号累积;5)阈值建立;6)循环判断;7)疑似OFDM信号判断;8)滑动移位循环自相关算法;9)建立特征库10)信号识别。这种方法能够在低信噪比下对无人机进行识别,具有较高的识别率,易于实际工程。
-
-
-
-
-
-
-
-
-