一种基于多任务学习的端侧指纹表征识别方法

    公开(公告)号:CN119672769A

    公开(公告)日:2025-03-21

    申请号:CN202411493371.8

    申请日:2024-10-24

    Abstract: 本发明公开了一种基于多任务学习的端侧指纹表征识别方法。首先对指纹图片进行预处理,然后将预处理后的训练数据输入主干神经网络,得到基础特征;之后将基础特征输入细节点提取网络,经过多层卷积和反卷积,生成纹理信息图。将基础特征输入多层感知机,生成拓扑信息,并得到对应的类别信息。最后将基础特征、纹理信息和拓扑信息通过联合损失函数,反向传播于三个网络模块进行更新,以达到将基础特征在纹理信息和拓扑信息的辅佐下转化为指纹表征信息的目的。本发明使用多任务学习方法,多尺度学习指纹特征信息,有效提升指纹识别精度。本发明将指纹多尺度信息融合为一个指纹表征,使得鲁棒性更强。本发明全程采用轻量级网络,节省了硬件资源开销,更加适配端侧设备。

Patent Agency Ranking