一种光助铁酸铋活化过硫酸氢钾降解有机废水的方法

    公开(公告)号:CN104743633B

    公开(公告)日:2016-07-20

    申请号:CN201510181466.0

    申请日:2015-04-16

    Abstract: 本发明公开了一种采用光助铁酸铋活化过硫酸氢钾降解有机废水的处理方法,属于污水处理技术领域。本发明中钙钛矿结构BiFeO3具有球状形貌,是在水热条件下通过加入一定量的表面活性剂制得,比表面积大,制得的BiFeO3本身即可在可见光照射下光催化降解有机污染物。本发明中将BiFeO3应用于活化过硫酸氢钾降解有机污染物中,在15min对甲基橙的降解率为94%,40min对甲基蓝的降解率为90%,40min对罗丹明的降解率为65%。BiFeO3与过硫酸氢钾联用氧化降解有机污染物,在光照较好的条件下可有效的降解有机污染物,在无光或光照条件不好的情况下也可有效的氧化降解有机污染物,具有很好的应用前景。

    一种基于低共熔溶剂电解液构建锌离子混合超级电容器的方法

    公开(公告)号:CN112309724B

    公开(公告)日:2022-08-26

    申请号:CN202011178614.0

    申请日:2020-10-29

    Abstract: 本发明提供了一种基于低共熔溶剂电解液构建锌离子混合超级电容器的方法,属于电化学储能技术领域。所述低共熔溶剂电解液由一定摩尔比的氯化锌与氢键供体物质混合均匀,加热反应后,添加一种或两种导电剂制备而成。所述的氢键供体物质为尿素、乙二醇、氯化胆碱、乙酰胺中的一种或两种。所述的导电剂为1,2‑二氯乙烷、碳酸二甲酯中的一种或两种。本发明能够提高锌离子混合超级电容器电解液的电导率,抑制锌枝晶的生长,从而提高混合超级电容器的电化学性能。同时本发明所用电解液为非燃性物质,相比于离子液体/有机电解液,更安全环保。

    一种分等级有序多孔碳纳米片材料及其制备方法和应用

    公开(公告)号:CN114291808A

    公开(公告)日:2022-04-08

    申请号:CN202210067710.0

    申请日:2022-01-20

    Abstract: 本发明属于纳米材料技术领域,具体涉及一种分等级有序多孔碳纳米片材料及其制备方法和应用,制备方法为:选取甘蔗渣作为原料,对其进行清洗,烘干脱水,得到干燥的甘蔗渣;将干燥的甘蔗渣置于管式炉内煅烧碳化,碳化保温一段时间,而后自然冷却,得到不同碳化温度的分等级有序多孔碳纳米片材料;得到的多孔碳纳米片材料尺寸较大、孔径分布均匀、结构完整,将其制成电极,发现其具有极佳的储锂性能。本发明以可持续再生的生物质甘蔗渣为碳源,成功制备出形貌较为独特的碳材料,并将其作为负极材料应用到锂离子电池中,研究其作为电极材料在锂离子电池中的储能效果,实现了生物质的回收利用。

    一种用于锌离子混合超级电容器的低共熔溶剂电解液的制备方法

    公开(公告)号:CN112289594A

    公开(公告)日:2021-01-29

    申请号:CN202011178632.9

    申请日:2020-10-29

    Abstract: 本发明提供了一种用于锌离子混合超级电容器的低共熔溶剂电解液的制备方法,属于电化学储能技术领域。所述低共熔溶剂电解液由一定摩尔比的高氯酸锌与氢键供体物质混合均匀,加热反应后,添加一种或两种导电剂制备而成。所述的氢键供体物质为尿素、N‑甲基乙酰胺、乙酰胺中的一种或两种;所述的导电剂为1,2‑二氯乙烷、碳酸二甲酯中的一种或两种。本发明所用电解液为低共熔溶剂,不易形成锌枝晶,提高了锌离子混合超级电容器电解液的电导率,因而使得锌离子混合超级电容器具有优异的电化学性能和高的能量密度。同时本发明所用电解液为非燃性物质,相比于有机电解液/离子液体电解液,具有更高的安全性。

    一种制备超级电容器用分级多孔碳的方法

    公开(公告)号:CN112279245A

    公开(公告)日:2021-01-29

    申请号:CN202011178631.4

    申请日:2020-10-29

    Abstract: 本发明提供了一种制备超级电容器用分级多孔碳的方法,属于碳材料制备技术领域。该方法具体步骤是:将氯化物和碳酸盐分别溶解于去离子水中,然后将碳酸盐的水溶液缓慢滴加到氯化物的水溶液中,滴加完毕后,磁力搅拌一段时间,然后将碳源加入到上述溶液中,磁力搅拌后放入到烘箱中、保温;再将得到的反应物转移至刚玉坩埚中,在Ar保护气氛下保温;将活化得到的产物冷却到室温取出,加入稀盐酸超声洗涤,然后用去离子水洗涤至pH=7后得到多孔碳,经干燥后得到分级多孔碳材料。本发明一步共沉淀策略既能提供多孔碳材料制备所需的硬模板,还能提供盐模板,同时具有物理活化和化学活化效果,因而制备出的分级多孔碳材料具有优异的电化学性能。

    一种溶剂热法制备阳离子插入的二维Ti3C2Tx材料的方法

    公开(公告)号:CN108455610A

    公开(公告)日:2018-08-28

    申请号:CN201810602209.3

    申请日:2018-06-12

    Abstract: 本发明公开了一种溶剂热法制备阳离子插入的二维Ti3C2Tx材料的方法,属于粉体制备技术领域。该方法是将金属阳离子的氟盐溶解于盐酸溶液中,然后将MAX相材料Ti3AlC2粉末加入其中,在反应釜中加热一定时间后,产物用蒸馏水和无水乙醇反复清洗,得到黑色粉末产物,干燥,得到阳离子插入的二维Ti3C2Tx材料。本发明不仅能够一步反应条件下实现Ti3C2Tx材料的刻蚀和阳离子插入,而且由于制备过程简单方便,重复性好,且适合规模化制备,具有较好的商业化应用前景。

    一种钾掺杂介孔g‑C3N4光催化材料在降解有机染料废水中的应用

    公开(公告)号:CN105148975B

    公开(公告)日:2017-09-01

    申请号:CN201510649207.6

    申请日:2015-09-30

    Abstract: 本发明公开了一种钾掺杂介孔g‑C3N4光催化材料在降解有机染料废水中的应用,属于光催化材料技术领域。该光催化材料的制备包括如下步骤:将三聚氰胺和KI充分研磨后平铺于坩埚底部,将SBA‑15均匀的分散在三聚氰胺和KI混合物的上面,然后将坩埚加盖后置于马弗炉内进行煅烧,产物经处理后即得所述钾掺杂介孔g‑C3N4光催化材料。该光催化材料比表面积大使得反应活性位点增加,钾掺杂后可有效抑制光生电子和空穴的复合,表现出更优异的光催化性能。本发明钾掺杂介孔g‑C3N4光催化材料可降解有机染料废水,在60min能降解80%以上的目标降解物,显示了优异的光催化活性。

    一种稻壳基多重杂原子掺杂碳纳米片的制备方法及应用

    公开(公告)号:CN118771377A

    公开(公告)日:2024-10-15

    申请号:CN202410825356.2

    申请日:2024-06-25

    Abstract: 本发明公开了一种稻壳基多重杂原子掺杂碳纳米片的制备方法及应用,属于炭材料制备技术与储能技术领域。本发明的稻壳基多重杂原子掺杂碳纳米片的制备方法,包括以下步骤:将稻壳进行碳化处理,然后放入KOH溶液中搅拌,得到预碳化稻壳;将所述预碳化稻壳与磷酸二氢铵、硫代水杨酸以及活化剂在水中混合,得到氮磷硫掺杂纳米片前驱物;煅烧所述氮磷硫掺杂纳米片前驱物,得到所述稻壳基多重杂原子掺杂碳纳米片。本发明以稻壳去硅后的碳为原料,磷酸二氢铵为磷源和氮源,硫代水杨酸为硫源,采用一步原位法合成氮磷硫掺杂絮状碳纳米片,并应用于锌离子混合电容器。氮、磷和硫杂原子的引入,提高了材料的电子传导性能,增加了离子吸附的缺陷位点。

    一种用于锌离子混合超级电容器的低共熔溶剂电解液的制备方法

    公开(公告)号:CN112289594B

    公开(公告)日:2022-08-26

    申请号:CN202011178632.9

    申请日:2020-10-29

    Abstract: 本发明提供了一种用于锌离子混合超级电容器的低共熔溶剂电解液的制备方法,属于电化学储能技术领域。所述低共熔溶剂电解液由一定摩尔比的高氯酸锌与氢键供体物质混合均匀,加热反应后,添加一种或两种导电剂制备而成。所述的氢键供体物质为尿素、N‑甲基乙酰胺、乙酰胺中的一种或两种;所述的导电剂为1,2‑二氯乙烷、碳酸二甲酯中的一种或两种。本发明所用电解液为低共熔溶剂,不易形成锌枝晶,提高了锌离子混合超级电容器电解液的电导率,因而使得锌离子混合超级电容器具有优异的电化学性能和高的能量密度。同时本发明所用电解液为非燃性物质,相比于有机电解液/离子液体电解液,具有更高的安全性。

    一种超级电容器用硫、氮、磷共掺杂多孔碳材料的制备方法

    公开(公告)号:CN109231201A

    公开(公告)日:2019-01-18

    申请号:CN201811316892.0

    申请日:2018-11-05

    Abstract: 本发明公开了一种超级电容器用硫、氮、磷共掺杂多孔碳材料的制备方法,属于新能源技术领域。本发明以银杏叶为碳源,用去离子水清洗去除表面杂质,洗净烘干后进行粉碎,并与复合碱金属氢氧化物均匀混合;在惰性气体中,以5℃/min的速率升温至活化温度,保温2h,得到活化产物;最后对活化产物进行酸洗中和,用去离子水清洗至中性,干燥研磨并过筛,得到超级电容器用多孔炭材料。本发明利用银杏叶为原料来制备超级电容器用炭材料,不仅节能环保、工艺简单、成本低廉,而且能够实现硫、氮、磷元素的“自掺杂”,从而提高电化学活性位点和增强与电解液的润湿性能,作为超级电容器电极材料具有广阔的市场应用前景。

Patent Agency Ranking