-
公开(公告)号:CN113158829A
公开(公告)日:2021-07-23
申请号:CN202110343840.8
申请日:2021-03-31
Applicant: 安徽大学
Abstract: 本发明公开了一种基于EfficientDet网络的深度学习矿石测量方法及应用系统,其中包括:通过高帧率摄像头获取流动皮带上的矿石图像;预处理矿石图像:标记图像中所有矿石,去除异常数据,对图像进行数据增强;将标记后的样本按7:2:1分为训练集,验证集和测试集;使用EfficientDet网络进行训练得到网络模型;在测试的时候使用EfficientDet网络模型得到的预测框定位出矿石的位置并通过摄像头的焦距以及图像像素大小计算出矿石的大小;根据系统预设阈值,发现有矿石大小超过系统阈值时发出提醒。本发明可以的高效的检测矿石的大小,相对于其他网络模型,使用更少的参数,有更快的检测速度,极大地降低了对人工的依赖。