-
公开(公告)号:CN117239813A
公开(公告)日:2023-12-15
申请号:CN202311518867.1
申请日:2023-11-15
Applicant: 国网江苏省电力有限公司 , 国网江苏省电力有限公司淮安供电分公司
Abstract: 本发明公开一种考虑谐波抑制的低压储能变流器控制方法,设计储能变流器的PQ、Vf、电能质量改善控制策略以及模式切换控制方法,考虑非线性载荷带来的谐波影响,通过测量电网的谐波来补偿电网的谐波电流,然后对电网电流进行谐波补偿。采集电网相角信号输入并离网切换模块,依据给定模式信号判断当前要运行在并网或离网模式,输出切换信号至控制模块与并网开关,切换控制模式。与现有技术相比,本发明以减小电网电流的总谐波失真实现储能单元在局部的削峰填谷、改善电能质量、备用电源等不同控制目标。
-
公开(公告)号:CN116609672A
公开(公告)日:2023-08-18
申请号:CN202310557967.9
申请日:2023-05-16
Applicant: 国网江苏省电力有限公司淮安供电分公司 , 国网江苏省电力有限公司
IPC: G01R31/367 , G01R31/378
Abstract: 本发明公开了一种基于改进的黑寡妇优化算法(Black Widow Optimization Algorithm,BWOA)‑前馈神经网络算法(Feedforward Neural Network,FNN)的储能电池荷电状态(State of charge,SOC)估计方法,包括:在仿真软件中搭建储能电池充放电仿真模型,获取其在多个温度条件下的原始数据序列(包括实测量:电压、电流、温度、平均电压、平均电流以及目标状态量:SOC);然后对数据进行主成分分析(Principal Component Analysis,PCA),选取其中方差累计贡献率较高的实测量替代原始的高维数据;建立储能电池SOC估计的FNN模型,并对FNN模型进行训练,在训练过程中使用改进的BWOA来迭代和优化模型参数;最后,将实测数据输入训练后的模型从而准确估算储能电池的SOC值。该方法具有估算精度高、收敛速度快、抗噪声能力强的优点。
-
公开(公告)号:CN115204461A
公开(公告)日:2022-10-18
申请号:CN202210620030.7
申请日:2022-06-02
Applicant: 国网江苏省电力有限公司淮安供电分公司
Abstract: 本发明涉及光伏发电功率预测技术领域,公开了一种基于集合经验模态分解与ARMA‑Elman混合模型的光伏功率预测方法,包括:步骤1:获取待预测系统的光伏功率数据,并使用集合经验模态分解将数据分解;步骤2:利用过零率对分解后的信号分类;步骤3:将高频信号、低频信号分别输入Elman和ARMA模型进行训练与预测;步骤4:将预测结果进行叠加,输出最终预测结果。与现有技术相比,本发明通过过零率对信号高频、低频分量进行划分,利用Elman和ARMA模型分别对高频与低频信号特征进行预测,在复杂天气情况下,针对非平稳随机波动的功率信号也有着良好的预测结果,显著地提升了光伏功率预测的准确性。
-
-