-
公开(公告)号:CN109920406B
公开(公告)日:2021-12-03
申请号:CN201910245435.5
申请日:2019-03-28
Applicant: 国家计算机网络与信息安全管理中心 , 珠海高凌信息科技股份有限公司
Abstract: 本发明的技术方案包括一种基于可变起始位置的动态语音识别方法及系统,用于实现:实时加载输入的语音流信号,对语音信号进行预处理;对语音信号进行特征提取,获取语音信号中的特征;根据语音信号中的特征调用语音模型信息库的多个模型对语音信号进行逐帧模式匹配。本发明的有益效果为:本发明的有益效果为容易理解,实现简单,当前语音模型匹配选取长度较为合理,经过算法改进后,减少了语音模型匹配次数,语音识别效率比之前的算法提高了30%的效率。
-
公开(公告)号:CN111354347B
公开(公告)日:2023-08-15
申请号:CN201811571564.5
申请日:2018-12-21
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/08
Abstract: 本发明提出了一种基于自适应热词权重的语音识别方法及系统,所述方法包括:生成热词网络并和静态解码网络一起加载到语音识别解码器中;将待识别的语音信号同步地在静态解码网络和热词网络上进行令牌传递,自适应地计算热词权重,并对静态解码网络上令牌的分数重新打分;输出解码结果。本发明的基于自适应热词权重的语音识别方法在一遍解码的过程中就能提升热词召回率,不影响解码的速度,并且自适应地计算热词权重既能有效地提高热词的召回率,不影响原先的解码速度,又能提高系统的鲁棒性。
-
公开(公告)号:CN115238703A
公开(公告)日:2022-10-25
申请号:CN202210616914.5
申请日:2022-06-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/35 , G06N20/00
Abstract: 本发明涉及一种包含历史深度语义特定文本的识别方法及系统,所述一种包含历史深度语义特定文本的识别方法包括:利用历史深度语义特定文本数据进行初始处理得到历史深度语义特定文本初始数据;利用所述历史深度语义特定文本初始数据得到历史深度语义特定文本识别结果,通过大数据分析特定文本进行模型训练,并对特定内容的语义特征进行分析筛除,进而进行分类、识别及定性,提升了对于特定文本的识别准确率,避免误差的产生。
-
公开(公告)号:CN106791220B
公开(公告)日:2021-06-04
申请号:CN201611082262.2
申请日:2016-11-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04W12/128 , H04M3/436 , H04M3/22 , H04M1/57
Abstract: 本发明公开了一种防止电话诈骗的方法及系统,其中,所述方法包括:获取实时话单;提取所述实时话单的号码特征和/或行为特征;根据预设的诈骗电话识别模型对所述实时话单的号码特征和/或行为特征进行分析,以确定所述实时话单对应的通话行为是否为诈骗电话;若确认所述实时话单对应的通话行为是诈骗电话,则向所述实时话单中的被叫号码发送报警提示,并将本次诈骗电话识别结果发送到第三方管理系统。本发明能够准确定位诈骗电话,及时获知诈骗电话的发生,并及时向诈骗电话对应的被叫号码发送报警提示,有效提高了用户对骚扰、诈骗电话的防控能力。
-
公开(公告)号:CN106686264B
公开(公告)日:2021-03-02
申请号:CN201610965273.9
申请日:2016-11-04
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04M3/436
Abstract: 本发明属于电信中有害电话监控技术领域,尤其是涉及一种诈骗电话筛选分析方法及系统。本发明的系统利用诈骗电话分析模型对历史数据进行分析,确定模型各特征权重值;对实时数据进行分析检测,检测结果与设定阈值比较给出诈骗电话的置信度。整个系统由数据查询管理系统、实时检测系统、模型自学习系统、趋势预测系统、数据存储系统组成。数据查询管理系统提供全量话单查询、诈骗话单查询、模型参数管理、自学习管理、趋势预测分析功能。实时检测系统通过诈骗电话发现模型实时分析、检测话单数据,发现诈骗电话。模型自学习系统对历史话单数据分析,通过自学习算法不断优化模型参数。趋势预测系统提供对未来诈骗电话趋势和变化进行预测。数据存储系统采用分布式存储系统,大数据分析处理引擎为整个系统提供快速数据抓取、数据分发、数据查询功能。
-
公开(公告)号:CN111785253A
公开(公告)日:2020-10-16
申请号:CN202010554156.X
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
Abstract: 本发明公开了一种分布不均衡的语种识别方法及系统,该方法包括如下步骤:步骤SS1:训练步骤,具体包括:对各语种的语音数据进行BN特征提取,生成的特征参数输入语种识别系统生成语种识别模型;步骤SS2:识别步骤,具体包括:加载步骤SS1获得的语种识别模型,对待识别的语音做判别,输出识别结果。通过本发明,使语种识别可以在分布不均衡的数据环境下同样产生有效作用,解决现有通用技术下的语种识别问题。
-
公开(公告)号:CN110248322A
公开(公告)日:2019-09-17
申请号:CN201910572375.8
申请日:2019-06-28
Applicant: 国家计算机网络与信息安全管理中心 , 天津市国瑞数码安全系统股份有限公司
Abstract: 本发明涉及一种基于诈骗短信的诈骗团伙识别方法及识别系统,该识别方法包括:实时识别并提取诈骗短信的敏感信息;对该诈骗短信进行通联关系分析,获取预定时间范围内所有相关通讯数据;从所有相关通讯数据中分别提取与敏感信息有关联的主叫信息和被叫信息,并提取与主叫号码相似度超过阈值的主叫信息;根据所有主叫信息获取诈骗团伙的诈骗地区、诈骗时间、团伙成员、团伙剧本。本发明提取诈骗短信的敏感信息,并获取与诈骗短信同一主叫的有关语音信息进行分析,从而获取以多种方式向被叫信息发送敏感信息的所有主叫信息和主叫语音,对所有主叫信息进行整体分析,以获取诈骗团伙的诈骗地区、诈骗时间、团伙成员等,实现诈骗团伙识别的自动化。
-
公开(公告)号:CN109492026A
公开(公告)日:2019-03-19
申请号:CN201811301410.4
申请日:2018-11-02
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/2458 , G06Q50/30
Abstract: 本发明公开了一种基于改进的主动学习技术的电信欺诈分类检测方法,涉及一种基于改进的主动学习技术的电信欺诈分类检测方法。抽取数量为X的数据划分训练集和测试集。从训练集中抽取样本作为初始训练集,其余为未标记样本。若当前训练集中正类与负类样本数量的比值不小于阈值e,训练有监督分类器f并构造强组合分类器F;将未标记样本逐个放入有监督分类器f中进行类别评分,得到类别评分结果,输入主动学习采样算法,得到信息量大小的评分。选取信息量最大的前D个进行标注,并加入训练集中;当前训练集样本数量大于等于X1,或者迭代次数大于等于C时结束,输出训练好的分类器f。本发明具有较强的稳定性和鲁棒性,实现较高的分类和检测效率。
-
公开(公告)号:CN109243492A
公开(公告)日:2019-01-18
申请号:CN201811263371.3
申请日:2018-10-28
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
Abstract: 本发明公开一种语音情感识别系统,包括语音预处理模块、情感特征提取模块、情感分析模块,所述语音预处理模块的输入端接语音数据,所述语音预处理模块的输出端与所述情感特征提取模块的输入端相联接,所述情感特征提取模块的输出端与所述情感分析模块的输入端相联接,所述情感分析模块的输出端输出分析识别结果;所述语音预处理模块通过对语音数据进行处理获得语音信号,并传递到所述情感特征提取模块对所述语音信号中与情感关联紧密的声学参数进行提取,最后送入所述情感分析模块完成情感的判断。本发明还提出一种语音情感识别方法,增加了电话诈骗系统的检出手段,对于语音数据可进行多维度分析,系统的检出准确率提高了5%。
-
公开(公告)号:CN105187403A
公开(公告)日:2015-12-23
申请号:CN201510498610.3
申请日:2015-08-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L29/06
CPC classification number: H04L63/1408 , H04L63/1433
Abstract: 本发明提出一种面向软件定义网络的网络安全性测试方法,包括针对目标软件定义网络的安全性测试框架、安全性测试策略、分类安全性测试方法、项目安全性测试方法和安全性测试步骤。其中,测试框架包括将目标软件定义网络划分为数据、控制、应用和管理四个网络平面,分别对各个网络平面的各个网元、链路以及各个网络平面之间的接口展开安全性测试;测试策略包括对安全性测试框架中的各个单元进行测试的选择和流程编制方法;分类安全性测试方法依据各个单元的类别特点开展不同类型的安全性测试;项目安全性测试方法实现具体的针对目标网元、链路或接口的安全性测试,测试流程定义了完整的针对目标软件定义网络的安全性测试过程和步骤。
-
-
-
-
-
-
-
-
-