-
公开(公告)号:CN112331181A
公开(公告)日:2021-02-05
申请号:CN201910694870.6
申请日:2019-07-30
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明属于目标语音提取和自适应技术领域,具体涉及一种基于多说话人条件下目标说话人语音提取方法,该方法具体包括:实时获取多个说话人混合的语音,提取多个说话人混合的语音的频谱;将锚语音输入到预先训练的说话人识别模型中,提取出目标说话人的特征向量;将获取的多个说话人混合的语音的频谱和目标说话人的特征向量输入至预先训练的目标说话人语音提取网络中,获取目标说话人的语音频谱;基于该目标说话人的语音频谱,获取目标说话人的语音。
-
公开(公告)号:CN108305616A
公开(公告)日:2018-07-20
申请号:CN201810039421.3
申请日:2018-01-16
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
Abstract: 本发明涉及一种基于长短时特征提取的音频场景识别方法及装置,该方法包括,对输入待识别音频信号进行预处理;对经过预处理后的所述待识别音频信号,进行短时音频特征提取,再进行长时音频特征提取,将所述待识别音频信号的所述长、短时音频特征联合,输入分类模型及其融合模型,进行分类和识别,输出音频场景的识别标签。本发明在常规短时特征提取的基础之上,进一步联合音频场景长时特征,可以表征复杂的音频场景信息,输入分类模型及其融合模型,进行分类和识别,输出音频场景的识别标签,其鲁棒性更强、区分性更好,且能够在更大程度上表征场景数据的整体特性,识别效率高、稳定性强。
-
公开(公告)号:CN113420112B
公开(公告)日:2025-02-18
申请号:CN202110685518.3
申请日:2021-06-21
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/334 , G06F40/289 , G06F18/214 , G06F18/23213
Abstract: 本发明涉及一种基于无监督学习的新闻实体分析方法及装置。方法包括:对待处理的多条新闻数据中的每条新闻数据分别进行分词处理,将分词处理后的每条新闻中包含的多个实体进行标注以得到标注结果;基于所述标注结果构建分布式表示模型,得到所述多个实体的分布式表示信息,所述分布式表示信息标识为实体向量;根据所述多个实体的分布式表示信息,对所述多个实体进行聚类分析以得到聚类结果。本申请将分布式的思想引入新闻实体的处理当中,通过新闻实体所处位置的上下文来得到实体的分布式表示,通过对实体的聚类分析来得到实体的聚类结果。
-
公开(公告)号:CN112331181B
公开(公告)日:2024-07-05
申请号:CN201910694870.6
申请日:2019-07-30
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明属于目标语音提取和自适应技术领域,具体涉及一种基于多说话人条件下目标说话人语音提取方法,该方法具体包括:实时获取多个说话人混合的语音,提取多个说话人混合的语音的频谱;将锚语音输入到预先训练的说话人识别模型中,提取出目标说话人的特征向量;将获取的多个说话人混合的语音的频谱和目标说话人的特征向量输入至预先训练的目标说话人语音提取网络中,获取目标说话人的语音频谱;基于该目标说话人的语音频谱,获取目标说话人的语音。
-
公开(公告)号:CN111354347B
公开(公告)日:2023-08-15
申请号:CN201811571564.5
申请日:2018-12-21
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/08
Abstract: 本发明提出了一种基于自适应热词权重的语音识别方法及系统,所述方法包括:生成热词网络并和静态解码网络一起加载到语音识别解码器中;将待识别的语音信号同步地在静态解码网络和热词网络上进行令牌传递,自适应地计算热词权重,并对静态解码网络上令牌的分数重新打分;输出解码结果。本发明的基于自适应热词权重的语音识别方法在一遍解码的过程中就能提升热词召回率,不影响解码的速度,并且自适应地计算热词权重既能有效地提高热词的召回率,不影响原先的解码速度,又能提高系统的鲁棒性。
-
公开(公告)号:CN110895933A
公开(公告)日:2020-03-20
申请号:CN201811030952.2
申请日:2018-09-05
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于空时残差神经网络的远场语音识别方法,所述方法包括:步骤1)构建并训练空时残差神经网络ST-RES-LSTM,该神经网络是在的空间和时间两个维度上都引入了残差结构的LSTM神经网络;步骤2)利用训练好的空时残差神经网络ST-RES-LSTM进行声学模型训练,并生成每一帧的分类概率;步骤3)构建语音识别解码网络,并使用步骤2)的训练好的声学模型进行维特比解码出最终识别结果。本发明的方法在LSTM网络的空间和时间两个维度都引入残差结构,既能缓解层数加深带来的梯度消失问题,又能缓解LSTM在时间维度存在的梯度消失问题,从而提高语音识别的性能。
-
公开(公告)号:CN119559964A
公开(公告)日:2025-03-04
申请号:CN202310496296.X
申请日:2023-05-05
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本申请提供了一种伪造语音检测方法,包括:训练阶段,训练阶段包括:采集用于训练第一语音信号;确定第一语音信号中的静音帧和语音帧;对第一语音信号的静音帧进行零值掩蔽;获取掩蔽后的第一语音信号的特征;将特征输入伪造语音检测模型进行训练,得到训练好的伪造语音检测模型;推理阶段,推理阶段包括:采集目标语音,获取目标语音的特征;对所述目标语音进行零值掩蔽,获取掩蔽后的所述目标语音的特征;将目标语音的特征输入训练好伪造语音检测模型,输出目标语音的检测结果,检测结果包括目标语音为伪造语音或目标语音为真语音。
-
公开(公告)号:CN113436619B
公开(公告)日:2022-08-26
申请号:CN202110594164.1
申请日:2021-05-28
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/06 , G10L15/08 , G10L19/18 , G10L25/18 , G10L25/24 , G10L25/27 , G10L25/30 , G10L25/45 , G10L25/54 , H04L9/32 , G10L15/14
Abstract: 本发明提供了一种语音识别解码的方法及装置。语音识别解码方法包括:确定待识别语音的N个子帧所对应的对数梅尔谱特征序列;通过经训练的神经网络编码器,处理所述对数梅尔谱特征序列,得到所述N个子帧各自对应的字符或者空白符的发射概率;根据预先确定的第一加权有限状态转移器以及所述N个子帧各自对应的的字符或者空白符的发射概率,采用束搜索算法搜索分数最高的词语序列。相比于传统的语音识别系统,本申请省略了帧级别对齐的流程,简化了训练和解码的流程;相比于端到端语音识别系统,在束搜索算法过程中使用加权有限状态转移器加快解码速度,高效地利用训练音频数据之外的文本数据,可以在多种领域快速部署语音识别系统。
-
公开(公告)号:CN113077785B
公开(公告)日:2022-07-12
申请号:CN201911300918.7
申请日:2019-12-17
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明属于网络通信技术领域,具体涉及一种端到端的多语言连续语音流语音内容识别方法,该方法包括:将待识别的语音频谱特征输入至预先构建的基于深度神经网络的段级别语种分类模型,提取语句级别语种状态后验概率分布向量;将每一种语言种类的待识别的语音频谱特征序列和语句级别语种状态后验概率分布向量输入至预先构建的多语言语音识别模型,输出对应语言种类的语音识别结果。
-
公开(公告)号:CN113420111A
公开(公告)日:2021-09-21
申请号:CN202110674586.X
申请日:2021-06-17
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F16/332 , G06F40/126 , G06F40/289 , G06F40/30 , G06K9/62 , G06N3/02
Abstract: 本申请实施例公开了一种用于多跳推理问题的智能问答方法及装置,方法包括:获取问题文本;对问题文本进行语义编码,获得问题文本的语义编码表示;根据问题文本的语义编码表示,确定第一预测结果,第一预测结果为问题文本的至少一个问题主体所在位置的预测结果;根据问题文本的语义编码表示,确定第二预测结果,第二预测结果为问题文本的至少一个问题关系的预测结果;根据第一预测结果和第二预测结果,生成子问题文本,子问题文本包括至少一个子问题;根据筛选文档,对至少一个子问题依次进行回答,获得与至少一个子问题对应的答案,筛选文档包括至少一个子问题对应的答案;根据至少一个子问题对应的答案,确定问题文本的最终答案。
-
-
-
-
-
-
-
-
-