-
公开(公告)号:CN105809184A
公开(公告)日:2016-07-27
申请号:CN201510726868.4
申请日:2015-10-30
Applicant: 哈尔滨工程大学
IPC: G06K9/62
Abstract: 本发明涉及机器视觉识别领域,特别是一种适用于加油站的车辆实时识别跟踪与车位占用判断的方法。本发明包括:收集加油站车辆样本和非车辆样本;对车辆样本和非车辆样本进行预处理;训练车辆分类器;利用车辆分类器对获取的实时图像进行车辆识别并记录车辆区域;采用光流法对识别到的车辆区域角点进行跟踪并绘制中心点轨迹;通过计算车辆区域与事先划定的加油站车位的面积重合比来判定车位占用情况并对车辆占用车位时间进行计时。本发明既可以对加油站内部车辆进行识别并对车辆轨迹进行跟踪,又可判断加油站内部车位占用情况,具有实施成本低,自动化程度高的特点。
-
公开(公告)号:CN104680544A
公开(公告)日:2015-06-03
申请号:CN201510117536.6
申请日:2015-03-18
Applicant: 哈尔滨工程大学
IPC: G06T7/00
Abstract: 本发明公开了一种基于3维流场正则化的变分场景流估计方法。包括以下步骤:利用已经标定好的左右摄像机获取左右图像序列;将3维流场进行正则化得到场景流数据项;将2维光流平滑项向3维空间扩展,得到场景流驱动各向异性的场景流平滑项;根据方向信息设计扩散张量并进行本征分解,得到每个方向上的扩散强度,从而进行各向异性平滑,得到深度平滑项;将场景流数据项、场景流平滑项和深度平滑项合并,构建能量泛函;使用变分极小化的方法,得到能量泛函对应的Euler方程的解;利用超松弛迭代对Euler方程进行迭代求解,得到优化后的场景流和深度信息。本发明具有鲁棒性高,场景流精确的优点。
-
公开(公告)号:CN106485675B
公开(公告)日:2019-06-14
申请号:CN201610854331.0
申请日:2016-09-27
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及一种基于3D局部刚性和深度图引导各向异性平滑的场景流估计方法。S1利用RGB‑D传感器同时获取对齐的纹理图像和深度图像;构建场景流估计能量泛函,结合3D局部刚性表面假设和全局约束方法求解稠密场景流,场景流能量函数的形式为;利用纹理图像和深度图像,结合3D局部刚性表面假设设计数据项;结合深度图驱动的各向异性扩散张量和全变分正则化设计平滑项;创建图像金字塔,采用由粗到精的求解策略;利用对偶方法求解场景流,引入场景流辅助变量。本发明利用彩色图像的像素间色差与像素之间的位置关系来共同确定空域滤波器权值,进而解决了修复过程中边缘失真的问题,为减少修复误差,结合颜色信息与结构相似度系数共同确定值域滤波器权值。
-
公开(公告)号:CN104680544B
公开(公告)日:2017-08-04
申请号:CN201510117536.6
申请日:2015-03-18
Applicant: 哈尔滨工程大学
IPC: G06T7/55
Abstract: 本发明公开了一种基于3维流场正则化的变分场景流估计方法。包括以下步骤:利用已经标定好的左右摄像机获取左右图像序列;将3维流场进行正则化得到场景流数据项;将2维光流平滑项向3维空间扩展,得到场景流驱动各向异性的场景流平滑项;根据方向信息设计扩散张量并进行本征分解,得到每个方向上的扩散强度,从而进行各向异性平滑,得到深度平滑项;将场景流数据项、场景流平滑项和深度平滑项合并,构建能量泛函;使用变分极小化的方法,得到能量泛函对应的Euler方程的解;利用超松弛迭代对Euler方程进行迭代求解,得到优化后的场景流和深度信息。本发明具有鲁棒性高,场景流精确的优点。
-
公开(公告)号:CN106952292A
公开(公告)日:2017-07-14
申请号:CN201710151290.3
申请日:2017-03-14
Applicant: 哈尔滨工程大学
IPC: G06T7/285
Abstract: 本发明提供的是一种基于6自由度场景流聚类的3D运动目标检测方法。利用深度相机获取场景的对齐的彩色图像和深度图像;构建6自由度场景流估计能量泛函;能量泛函的最优求解;根据场景流的定义,利用旋转向量和平移向量计算出场景流;根据场景流信息进行初步分析,确定移动目标的大体数目;根据场景流提取运动特征信息,获取每个点的特征向量;利用ISODATA算法对特征向量进行聚类分析,提取出运动目标。本发明利用邻域约束结合亮度恒常、深度恒常约束构建数据项;利用全变分平滑对旋转向量和平移向量进行平滑约束。完成场景流求解后,利用ISODATA算法对场景流进行聚类分析,提取出3D运动目标。
-
公开(公告)号:CN106504202A
公开(公告)日:2017-03-15
申请号:CN201610854332.5
申请日:2016-09-27
Applicant: 哈尔滨工程大学
IPC: G06T5/00
CPC classification number: G06T5/002 , G06T2207/20192
Abstract: 本发明属于机器视觉领域,具体涉及一种基于自适应非局部平滑的3D场景流估计方法。本发明包括:根据双目摄像机获取的立体图像序列之间的对应关系,将局部约束方法与全局平滑相结合,并引入自适应非局部平滑;参考Lucas模型,设计局部邻域约束的场景流数据项;平滑项采用鲁棒函数,构造近似于L1范数的全变分平滑;使用去对偶的方式求解能量泛函。本发明能够有效地去除图像序列中噪声产生的异质点,保持运动场的边缘信息,能有效地传递给低纹理区域。
-
公开(公告)号:CN106485675A
公开(公告)日:2017-03-08
申请号:CN201610854331.0
申请日:2016-09-27
Applicant: 哈尔滨工程大学
CPC classification number: G06T5/002 , G06T5/005 , G06T5/50 , G06T2207/20016 , G06T2207/20192
Abstract: 本发明涉及一种基于3D局部刚性和深度图引导各向异性平滑的场景流估计方法。S1利用RGB-D传感器同时获取对齐的纹理图像和深度图像;构建场景流估计能量泛函,结合3D局部刚性表面假设和全局约束方法求解稠密场景流,场景流能量函数的形式为;利用纹理图像和深度图像,结合3D局部刚性表面假设设计数据项;结合深度图驱动的各向异性扩散张量和全变分正则化设计平滑项;创建图像金字塔,采用由粗到精的求解策略;利用对偶方法求解场景流,引入场景流辅助变量。本发明利用彩色图像的像素间色差与像素之间的位置关系来共同确定空域滤波器权值,进而解决了修复过程中边缘失真的问题,为减少修复误差,结合颜色信息与结构相似度系数共同确定值域滤波器权值。
-
公开(公告)号:CN104809698A
公开(公告)日:2015-07-29
申请号:CN201510117532.8
申请日:2015-03-18
Applicant: 哈尔滨工程大学
IPC: G06T5/00
Abstract: 本发明属于深度图像修复技术领域,具体涉及对kinect深度图像的基于改进三边滤波的Kinect深度图像修复方法。本发明包括:利用Kinect同步获取深度图与彩色图;对彩色图和深度图进行对齐;提取深度图边缘信息;提取彩色图边缘信息;去除彩色图中的非边界纹理信息;用区域生长方法,在深度图中找出深度值错误的像素点并去除该点的错误深度值;用基于色差与结构相似度系数的改进三边滤波方法对深度图空洞区域进行填充修复。该方法针对kinect深度图像具有良好的空洞填充效果,能够较好地保持深度图边缘信息。
-
-
-
-
-
-
-