强冲击噪声下基于量子射线机理的相干分布源测向方法

    公开(公告)号:CN113111304B

    公开(公告)日:2022-09-27

    申请号:CN202110357999.5

    申请日:2021-04-01

    Abstract: 本发明提供一种强冲击噪声下基于量子射线机理的相干分布源测向方法,包括:建立相干分布源的广义阵列流型,构造基于加权无穷范数低阶协方差矩阵的极大似然测向方程;计算更新后所有射线的适应度函数值,更新全局最优量子位置和局部最优量子位置;每条射线依概率从斯涅尔折射定律演化和随机演化两种演化规则中选择一种更新其量子位置;计算更新后所有射线的适应度函数值,更新全局最优量子位置和局部最优量子位置;判断是否达到最大迭代次数,若未达到,返回步骤三;若达到则终止循环迭代,输出全局最优量子位置,经过映射变换为全局最优位置对应中心方位角和角度扩散的极大似然估计值。本发明在强冲击噪声环境下具有鲁棒性,突破现有应用局限。

    基于量子鲨鱼机制的AUV全局路径规划方法

    公开(公告)号:CN112947506B

    公开(公告)日:2022-08-02

    申请号:CN202110468435.9

    申请日:2021-04-28

    Abstract: 本发明提供一种基于量子鲨鱼机制的AUV全局路径规划方法,采用多Lamb涡流叠加技术和障碍物栅格等效技术来实现环境建模。本发明所提供的AUV全局路径规划模型包括决策变量设计、航行代价设计、约束条件设计和代价函数设计四部分,充分考虑了AUV航行路径的安全性、高效性和可靠性,将具有更好的实用性。本发明设计的量子鲨鱼优化机制,可以快速得到AUV全局路径规划路线,其仿生于鲨鱼捕食过程并结合模拟量子旋转门来演化鲨鱼量子态,收敛速度快、收敛精度高,且具有更好的鲁棒性。仿真实验证明了基于量子鲨鱼机制的AUV全局路径规划方法的有效性,且相对于传统的路径规划方法搜索速度更快、精度更高。

    量子海狮机制的无人机群任务分配方法

    公开(公告)号:CN113608546A

    公开(公告)日:2021-11-05

    申请号:CN202110783634.9

    申请日:2021-07-12

    Abstract: 本发明提供一种量子海狮机制的无人机群任务分配方法,针对无人机群实际环境中任务分配效能较低的难题,设计了量子海狮机制求取最优任务分配矩阵,以无人机执行任务所获得的价值以及其对应付出的代价设计出效能函数,并利用无人机航程限制、任务限制、弹药限制等约束条件设计出惩罚函数,最终将效能函数与惩罚函数结合得到适应度函数。本发明考虑了设计无人机路径问题,并引入了多种无人机并分别执行多种任务,如侦察机执行侦察和战场评估任务,轰炸机执行攻击目标任务,战斗机执行侦察、攻击目标和战场评估任务。同时,利用量子海狮机制计算最优解,提高无人机群的任务分配效能。

    基于量子星系搜索机制的双层异构网络功率分配方法

    公开(公告)号:CN113115456A

    公开(公告)日:2021-07-13

    申请号:CN202110357285.4

    申请日:2021-04-01

    Abstract: 本发明提供一种基于量子星系搜索机制的双层异构网络功率分配方法,包括:建立双层异构网络功率分配模型;初始化星体量子位置;更新量子旋转角,实现局部搜索的寻优搜索过程;判断是否达到最大循环次数K1,若未达到,返回步骤三;若达到,终止循环;选出更优的星系;判断是否达到最大循环次数K2,若未达到,返回步骤五;若达到,终止循环;判断标志变量flag;实现局部搜索的寻优搜索过程;判断是否达到最大循环次数K3,若未达到,返回步骤八;若达到,终止循环,将第g迭代中得到的作为最优结果,判断是否达到最大迭代次数G,若未达到,返回到步骤三;若达到,则终止迭代,将第G次迭代中的最优星体位置输出。本发明能获得比其他的智能求解机制更优秀的系统性能。

    一种基于量子晶体结构机制的欠定盲源分离方法、系统及存储介质

    公开(公告)号:CN118013839B

    公开(公告)日:2024-07-19

    申请号:CN202410172703.6

    申请日:2024-02-07

    Abstract: 本发明一种基于量子晶体结构机制的欠定盲源分离方法、系统及存储介质,涉及盲源分离领域,为解决现有方法对初始估计信号设置较敏感,需要源信号的稀疏度作为先验知识的问题。包括:步骤1:接收观测信号,根据估计出的混合矩阵构建源信号恢复模型,并构建适应度函数模型;步骤2:初始化量子晶体的量子位置,计算适应度值,确定最优量子晶体;步骤3:确定量子主晶体和量子平均晶体,基于隔室的不同对量子位置进行更新;步骤4:计算分支晶体的适应度值,通过贪婪选择策略更新量子位置,确定最优量子晶体的量子位置;步骤5:迭代至输出全局最优位置;步骤6:迭代至原始初始信号全部更新完毕;步骤7:根据新的初始估计信号设置进行源信号恢复。

    强冲击噪声下基于嵌套阵列的鲁棒动态测向方法

    公开(公告)号:CN112800596B

    公开(公告)日:2022-12-13

    申请号:CN202110028619.3

    申请日:2021-01-11

    Abstract: 本发明提供一种强冲击噪声下基于嵌套阵列的鲁棒动态测向方法,包括:建立动态测向模型;初始化搜索空间;初始化所有个体量子位置并设定相关参数;构造适应度函数,计算适应度函数值、平均适应度值,计算整个生态系统当前代的平均适应度值;根据量子标杆学习机制实现寻优搜索过程;判断是否达到最大迭代次数G,若达到则中止循环迭代,输出外部标杆的量子位置和位置并进入下一步;判断是否达到最大快拍数Kp,若未达到,更新下一次快拍时P个方位角的搜索空间,返回步骤三;否则,输出动态测向结果。本发明在冲击噪声下设计了加权无穷范数低阶差分矩阵,通过将嵌套阵列虚拟为均匀线阵或近似均匀线阵,并利用极大似然测向方法实现了动态测向。

    量子海狮机制的无人机群任务分配方法

    公开(公告)号:CN113608546B

    公开(公告)日:2022-11-18

    申请号:CN202110783634.9

    申请日:2021-07-12

    Abstract: 本发明提供一种量子海狮机制的无人机群任务分配方法,针对无人机群实际环境中任务分配效能较低的难题,设计了量子海狮机制求取最优任务分配矩阵,以无人机执行任务所获得的价值以及其对应付出的代价设计出效能函数,并利用无人机航程限制、任务限制、弹药限制等约束条件设计出惩罚函数,最终将效能函数与惩罚函数结合得到适应度函数。本发明考虑了设计无人机路径问题,并引入了多种无人机并分别执行多种任务,如侦察机执行侦察和战场评估任务,轰炸机执行攻击目标任务,战斗机执行侦察、攻击目标和战场评估任务。同时,利用量子海狮机制计算最优解,提高无人机群的任务分配效能。

    一种多无人机抢灾救援规划方法

    公开(公告)号:CN114995492A

    公开(公告)日:2022-09-02

    申请号:CN202210594253.0

    申请日:2022-05-27

    Abstract: 本发明公开了一种多无人机抢灾救援规划方法,步骤一、建立多无人机救援规划模型;步骤二、初始化量子北方苍鹰量子位置并设定参数;步骤三、计算量子北方苍鹰目标函数值;步骤四、根据所有量子北方苍鹰位置的目标函数值进行非支配解排序;步骤五、计算每一非支配等级中量子北方苍鹰位置拥挤度;步骤六、在猎物识别攻击阶段更新量子北方苍鹰量子位置;步骤七、在追逃阶段更新量子北方苍鹰量子位置;步骤八、判断是否达到量子北方苍鹰最大迭代次数,是则终止迭代,将非支配等级为1的量子北方苍鹰位置对应为任务分配矩阵,作为抢灾救援规划任务分配结果输出;否则令k=k+1,执行步骤四。本发明克服了容易陷入局部收敛的弊端,提升了演化机制的寻优速率。

Patent Agency Ranking