一种基于卷积神经网络的稠密光流估计方法

    公开(公告)号:CN107993255A

    公开(公告)日:2018-05-04

    申请号:CN201711220774.5

    申请日:2017-11-29

    Abstract: 本发明属于计算机视觉领域,提供了一种基于卷积神经网络的稠密光流估计方法,以解决现有技术计算时间长,计算量大,计算效率不高的问题,包含如下步骤:(1)提取运动图像信息:构建全卷积网络架构,然后在输入层输入两幅通道数都为C的图像,从卷积层8输出光流_6;(2)生成光流:构建稠密光流生成模型。光流_6输入反卷积层1,反卷积层2输出光流_5,反卷积层3输出光流_4,反卷积层4输出光流_3,反卷积层5输出光流_2,反卷积层6输出光流_1;(3)模型训练:用最终损失函数进行训练;(4)光流估计:从全卷积网络架构的输入层输入图像对,输出最终预测的光流。本发明能够有效地利用先验知识,模型可以预先训练,大大减少了计算时间。

    一种基于空洞卷积堆叠网络的半监督光流学习方法

    公开(公告)号:CN109086807A

    公开(公告)日:2018-12-25

    申请号:CN201810779483.8

    申请日:2018-07-16

    Abstract: 本发明提供了一种基于卷积神经网络的半监督学习光流方法,属于网络设计领域。本发明提供的方法可以针对带标签和无标签的混合数据进行训练,并设计一种遮挡感知损失函数,将用于监督学习的端点误差代价函数与用于非监督学习的数据项和平滑项相结合,构建一种半监督学习光流模型,在网络架构上采用堆叠网络结构,在卷积层引入空洞卷积来增大感受野,并设计遮挡感知层来估计遮挡区域,该网络能够端到端地进行半监督光流学习。本发明提供的方法能够提高光流估计精度,并且还提出一种遮挡感知损失函数来半监督训练网络,在网络架构上设计一种堆叠网络结构从而进一步提升网络性能。

    基于卷积神经网络的场景流估计方法

    公开(公告)号:CN108932725A

    公开(公告)日:2018-12-04

    申请号:CN201810589261.X

    申请日:2018-06-08

    Abstract: 本发明公开了基于卷积神经网络的场景流估计方法,属于计算机视觉领域。该方法将卷积神经网络与场景流估计相结合,可以从大量无标注的数据集中无监督学习得到场景流,进而提出了一种新的网络架构,命名为SF-Net,端到端地进行场景流无监督学习,该模型能够从输入的图像中直接提取出场景流。在估计场景流时,通过使用预先训练好的网络模型,只需通过前向计算就可以得到场景流,能够满足实时应用要求。

Patent Agency Ranking