-
公开(公告)号:CN115983379A
公开(公告)日:2023-04-18
申请号:CN202310265601.4
申请日:2023-03-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/01 , G06N5/02 , G06N3/0464 , G06N3/084
Abstract: 公开了一种MDATA知识图谱的可达路径查询方法及其系统,其首先基于大型网络中的IP关联性构建通信图和实际场景下网络中节点之间的通信关系构建MDATA知识图谱,接着计算MDATA知识图谱的强连通子图和所述强连通子图中心顶点,并以中心顶点为核心构建节点的两跳标签索引,继而基于两条标签索引查询节点间的可达路径以实现快速查询来自不同强连通子图的两个节点的可达性与路径关系。同时,依据存储的事件时间对可达路径进行筛选以过滤掉不符合事件发展顺序的无效路径,从而保存攻击者实际采用的攻击路径和采用的操作,最终能够结合模式匹配的方法依据操作的时序关系和路径分析出攻击者选用的攻击方式从而采取防御措施。
-
公开(公告)号:CN115828269A
公开(公告)日:2023-03-21
申请号:CN202310115880.6
申请日:2023-02-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F21/57 , G06F21/56 , G06N3/08 , G06N3/0442 , G06N3/045
Abstract: 本公开提供了一种源代码漏洞检测模型的构建方法、装置、设备及存储介质,通过构建代码结构图,所述代码结构图包括节点、边信息、节点类型以及边类型;基于所述代码结构图构建元路径图,其中,所述元路径图中的元路径用于代表由边信息连接的源节点到目标节点的异构关系;基于元路径注意力机制学习所述元路径图中各个元路径的异构关系,以及基于分层注意力机制学习超过预设距离的节点之间的依赖关系,从而使得图神经网络能够学习代码的语法结构信息,提升代码漏洞检测的性能。
-
公开(公告)号:CN119249142A
公开(公告)日:2025-01-03
申请号:CN202411129997.0
申请日:2024-08-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国电子科技集团公司第五十四研究所
IPC: G06F18/214 , H04L9/40 , G06F18/23213
Abstract: 本发明提供了一种基于有限审查预算的网络入侵样本高效标注方法、系统及存储介质,该网络入侵样本高效标注方法包括执行以下步骤:人工标注步骤:从新样本中选取设定数量的样本用于人工的审查、标记和统计类别数;标注分配步骤:利用已标记样本和统计类别数来聚类和标注剩余样本。本发明的有益效果是:1.本发明的网络入侵样本高效标注方法不对特征空间进行限制,可在原始特征空间执行,也可在特征表示空间执行;2.本发明的网络入侵样本高效标注方法能够在有限标注预算的前提下提高新样本的标注准确性和效率。
-
公开(公告)号:CN118101357B
公开(公告)日:2024-08-06
申请号:CN202410525137.2
申请日:2024-04-29
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L69/06 , H04L69/22 , H04L47/2441 , G06N3/042 , G06N3/0442 , G06N3/08
Abstract: 本发明提供了一种结合数据包语义的网络流量分类方法,将数据包输入到网络流量处理工具,分别处理网络流量数据包的数据包头和有效载荷,分别得到二者的特征向量;将数据包头的特征向量与有效载荷的特征向量进行融合,得到整个数据包的特征向量;将特征向量中具有相同五元组的网络流量数据包归于同一通信过程,由同一通信过程中的网络流量数据包构成图,并进行分类。本发明根据不同传输层协议的特点,采用不同的方法来构图,充分表示不同的通信过程,以此利用数据包之间的上下文信息,弥补了现有方法没有利用上下文信息的缺陷。
-
公开(公告)号:CN117955745A
公开(公告)日:2024-04-30
申请号:CN202410347079.9
申请日:2024-03-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/214 , G06F18/213 , G06F18/2132 , G06F18/2135 , G06F18/23213 , G06F18/25
Abstract: 本发明涉及网络安全领域及计算机深度学习领域,特别涉及一种融合网络流量特征和威胁情报的网络攻击同源性分析方法。其包括步骤:S1.构建网络流量特征;S2.构建威胁情报特征;S3.使用聚类进行网络攻击同源性分析。本方法分析的网络攻击是单步攻击,采用设备捕获的网络流量数据和开源威胁情报进行网络攻击同源性分析,相比现有方法,本发明使用的特征较为全面,更能表征网络攻击的特点。结合网络攻击的有效载荷特征、网络攻击的通信行为特征以及威胁情报特征,更能全面的表示一个网络攻击,有利于后续的同源性分析。
-
公开(公告)号:CN117932233A
公开(公告)日:2024-04-26
申请号:CN202410324849.8
申请日:2024-03-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F18/10 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/23
Abstract: 本发明提供了一种基于相似异常行为的用户行为模型微调方法、系统及介质,该方法包括:对每个用户的行为数据预处理及统计特征提取;按正常行为统计特征,对所有用户进行聚类;对每个正常用户使用其自身的部分行为数据训练单独的用户级行为模型,所述正常用户为未出现过异常行为的用户;以同聚类的异常用户数据对每个正常用户训练单独的用户级行为模型进行微调,所述异常用户为存在异常行为的用户;对微调后的用户级行为模型进行测试。本发明能让企业以少数异常行为数据辅助对正常用户未来可能出现的异常行为的检测,有利于企业对内部威胁进行预警。
-
公开(公告)号:CN116069955A
公开(公告)日:2023-05-05
申请号:CN202310205496.5
申请日:2023-03-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/36 , G06F16/387 , G06F16/383 , G06F40/284 , G06F40/295 , G06F40/247
Abstract: 本发明提供了一种基于MDATA模型的时空知识抽取方法,包括以下步骤:步骤1,识别时间和空间知识;通过时间触发词表、空间触发词识别输入序列中的时空知识,并将序列中的时空知识替换为概念代号;步骤2,时空知识的实体关系依赖识别,得到知识五元组;步骤3,时间、空间知识规范化处理。本发明的有益效果是:1.时空信息在文本中有很强的语言特征,本发明方法通过触发词匹配,能高效获取时空信息;2.时空信息是时间表达的关键要素,在知识图谱中,时空信息是同实体、关系紧密联系的,本发明方法通过结合时空信息来进行知识抽取任务,能有效提升知识多元组的质量;3.本发明方法通过规范化处理,能统一时空信息的表达。
-
公开(公告)号:CN119377358A
公开(公告)日:2025-01-28
申请号:CN202411932240.5
申请日:2024-12-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/332 , G06N5/025 , G06F18/241 , G06F18/214
Abstract: 本发明提供了一种面向多源信息冲突的威胁情报可信度分析方法,获取同IP中不同来源的威胁情报数据;提取情报数据中描述攻击者采取攻击行为的时间、地点和攻击类型,度量情报的可信度,对攻击时间、地点及攻击类型进行编码,结合可信度制作成情报数据的训练材料,导入分类学习模型进行深度学习,学习模型最终能准确地分类新的情报数据并判断其可信度;通过大型语言模型对情报源的权威度给出评分,利用检索增强生成技术生成答可信度结果;输出同IP下更为可信的可信度判定结果。本发明能够全面评估多源威胁情报数据的质量,通过检测多情报间的一致性发现情报冲突,剔除低质量数据。
-
公开(公告)号:CN119377036A
公开(公告)日:2025-01-28
申请号:CN202411318246.3
申请日:2024-09-20
Applicant: 电子科技大学(深圳)高等研究院 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F11/30
Abstract: 本申请实施例提供了一种审计日志缩减方法、系统、电子设备及存储介质,属于审计日志技术领域。该方法包括:获取原始日志数据;将原始日志数据输入至目标缓存进行操作解析,得到目标缓存的多个三元组数据;其中,每一三元组数据中包含两个节点子数据、以及节点子数据之间的节点动作信息;基于节点子数据与节点动作信息,对三元组数据进行文件引用缩减处理,得到文件引用缩减数据;基于节点子数据与节点动作信息,对三元组数据进行时间依赖关系缩减处理,得到时间依赖关系缩减数据;基于文件引用缩减数据和时间依赖关系缩减数据进行关联提取,得到目标缩减日志。本申请实施例能够对审计日志进行缩减。
-
公开(公告)号:CN118941606B
公开(公告)日:2025-01-07
申请号:CN202411415165.5
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种自动驾驶单目深度估计的道路物理域对抗补丁生成方法,形成场景图像数据集;生成目标车辆的掩码图像,目标车辆转换成像素坐标系下的像素坐标,将目标汽车嵌入场景图像中得到目标对象场景图;将道路补丁转换成像素坐标系下的像素坐标;通过场景构造模块得到多个场景图像,得到多方道路补丁视图集;计算深度损失及特征损失,构造目标损失函数;通过目标函数计算由模型输入相应补丁区域大小加权的平均梯度,使用平均梯度作为道路补丁图像的梯度,使用MI‑FGSM的方法更新当前补丁,当达到最大迭代次数时生成最终道路对抗补丁。本发明的方法使得单目深度估计技术更加精准、可靠,鲁棒性更高。
-
-
-
-
-
-
-
-
-