-
公开(公告)号:CN115545300A
公开(公告)日:2022-12-30
申请号:CN202211205618.2
申请日:2022-09-30
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请涉及一种基于图神经网络进行用户行为预测的方法及装置,其方法包括标注用户、商品及两者之间的交互行为;进行构图;初始化动态实体嵌入和动态关系嵌入,设置模型的训练时间步;若当前的训练时间步小于设置的训练时间步,则获取当前的时序知识图谱的静态关系嵌入,使用循环神经网络更新动态关系嵌入;使用图神经网络计算当前的时序知识图谱的静态实体嵌入,并使用循环神经网络更新动态实体嵌入,直至训练时间步等于或大于设置值;使用卷积解码器进行解码,得到所有实体的得分,并根据得分进行评估,保存评估结果满足预设条件的时序知识图谱推理的模型;基于模型进行预测。本申请具有使图结构信息聚合更准确,提高预测精度的效果。
-
公开(公告)号:CN115473836A
公开(公告)日:2022-12-13
申请号:CN202210976811.X
申请日:2022-08-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L43/0876 , H04L43/04 , H04L47/10 , H04L47/125 , H04L47/30
Abstract: 本发明公开了一种基于流图模型的网络流量测量方法和装置。该方法包括步骤:将每次从网卡或网络流量文件接收到的数据包流插入到一个高速缓冲队列中,并从所述数据包中提取数据包信息;根据流图模型和提取的所述数据包信息构建用于更新和存储网络流特征的布谷矩阵,所述流图模型的节点、边和边上的权重向量,分别对应I P地址、I P之间的网络流和网络流的统计特征向量;通过基础查询接口对所述布谷矩阵进行查询获取网络流特征数据。本发明降低了网络流量测量的时空开销和提高了网络流量测量的效率。
-