-
公开(公告)号:CN114169402B
公开(公告)日:2024-10-18
申请号:CN202111354267.7
申请日:2021-11-16
Applicant: 哈尔滨工业大学 , 大连中睿科技发展有限公司
IPC: G06V10/764 , G06V10/774 , G06V10/44 , G06V10/50 , G06V10/82 , G06N3/0442 , G06N3/08
Abstract: 本发明提供一种基于门控循环单元的探地雷达地下空洞目标自动识别方法。所述门控循环神经网络的GRU有两个门:重置门和更新门;重置门主要决定了到底有多少过去的信息需要遗忘,根据输入xt,当前重置门的输出rt和上一时间步隐藏状态ht‑1得到候选隐藏状态#imgabs0#如果重置门近似0,上一个隐藏状态将被丢弃;而更新门帮助模型决定到底要将多少信息传递到未来,或到底前一时间步和当前时间步的信息有多少是需要继续传递的,更新门zt根据上一时间步的隐藏状态ht‑1和当前时间步的候选隐藏状态#imgabs1#得到当前的隐藏状态ht;重置门和更新门的激活函数σ是sigmoid函数。本发明解决现有方法难以检测识别地下空洞目标的问题。
-
公开(公告)号:CN114169411B
公开(公告)日:2024-08-02
申请号:CN202111384746.3
申请日:2021-11-22
Applicant: 哈尔滨工业大学 , 大连中睿科技发展有限公司
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 本发明提出一种基于3D‑CNN算法的三维探地雷达图像地下管线识别方法,通过探地雷达获得三维回波图像,对三维回波图像进行预处理,将已预处理的探地雷达的三维回波图像进行标注,并将其打乱,随机分配至训练集和验证集;利用的训练集和验证集对3D‑CNN的神经网络模型进行训练,得到训练好的权重模型;利用获得训练好的神经网络模型,对探地雷达三维回波图像进行管线目标识别检测,最终标注出带有地下管线信息的三维回波图像;本发明可以将地下管线目标识别概率提高到95%以上,且对探地雷达三维回波图像的地下管线目标进行检测可以有效提高识别概率并且可以大幅降低管线虚检概率。
-
公开(公告)号:CN114169410B
公开(公告)日:2024-08-02
申请号:CN202111383573.3
申请日:2021-11-22
Applicant: 哈尔滨工业大学
IPC: G06V10/764 , G06V10/774 , G06V10/44 , G06V10/82 , G06N3/0442 , G06N3/08
Abstract: 本发明提出一种基于长短期记忆模型的探地雷达地下空洞目标自动识别方法,对已获取的地下空洞目标的探地雷达回波图像进行预处理,得到横向波纹受到抑制的探地雷达回波图像;对生成的探地雷达回波图像进行预筛选,标记明确空洞目标像素位置;对已标记的图像数据进行增广处理,得到处理后的具有相似分布的增广图像数据集;使用增广图像数据集,进行特征提取,对提取到的特征数据进行标准化处理,得到特征向量数据集;将得到的特征向量数据集分为训练集和验证集,对长短期记忆模型进行训练,得到权重模型;将得到的验证集输入得到的权重模型,对图像进行目标识别分类;采用本发明的方法能有效的提高识别概率,将识别概率提高到90%以上。
-
公开(公告)号:CN113901878B
公开(公告)日:2024-04-05
申请号:CN202111068615.4
申请日:2021-09-13
Applicant: 哈尔滨工业大学
IPC: G06V20/13 , G06V10/774 , G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/049 , G06N3/084
Abstract: 本发明提出一种基于CNN+RNN算法的三维探地雷达图像地下管线识别方法,对已经得到的探地雷达的三维回波图像进行直达波去除,以及小波去噪;将已预处理的探地雷达的三维回波图像进行标注,分别为横向管线、纵向管线、地下空洞和无目标四类,并将其打乱,随机分配至训练集和验证集;利用的训练集和验证集对CNN+RNN的神经网络模型进行训练,得到训练好的权重模型;利用训练好的神经网络模型,对探地雷达三维回波图像进行管线目标识别检测;采用本发明的方法对探地雷达三维回波图像的地下管线目标进行检测可以有效提高识别概率和识别速度,可以将地下管线目标识别概率提高到95%以上。
-
公开(公告)号:CN114169410A
公开(公告)日:2022-03-11
申请号:CN202111383573.3
申请日:2021-11-22
Applicant: 哈尔滨工业大学
IPC: G06K9/62 , G06V10/764 , G06V10/774 , G06V10/44 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提出一种基于长短期记忆模型的探地雷达地下空洞目标自动识别方法,对已获取的地下空洞目标的探地雷达回波图像进行预处理,得到横向波纹受到抑制的探地雷达回波图像;对生成的探地雷达回波图像进行预筛选,标记明确空洞目标像素位置;对已标记的图像数据进行增广处理,得到处理后的具有相似分布的增广图像数据集;使用增广图像数据集,进行特征提取,对提取到的特征数据进行标准化处理,得到特征向量数据集;将得到的特征向量数据集分为训练集和验证集,对长短期记忆模型进行训练,得到权重模型;将得到的验证集输入得到的权重模型,对图像进行目标识别分类;采用本发明的方法能有效的提高识别概率,将识别概率提高到90%以上。
-
公开(公告)号:CN114169402A
公开(公告)日:2022-03-11
申请号:CN202111354267.7
申请日:2021-11-16
Applicant: 哈尔滨工业大学 , 大连中睿科技发展有限公司
IPC: G06K9/62 , G06V10/764 , G06V10/774 , G06V10/44 , G06V10/50 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种基于门控循环单元的探地雷达地下空洞目标自动识别方法。所述门控循环神经网络的GRU有两个门:重置门和更新门;重置门主要决定了到底有多少过去的信息需要遗忘,根据输入xt,当前重置门的输出rt和上一时间步隐藏状态ht‑1得到候选隐藏状态如果重置门近似0,上一个隐藏状态将被丢弃;而更新门帮助模型决定到底要将多少信息传递到未来,或到底前一时间步和当前时间步的信息有多少是需要继续传递的,更新门zt根据上一时间步的隐藏状态ht‑1和当前时间步的候选隐藏状态得到当前的隐藏状态ht;重置门和更新门的激活函数σ是sigmoid函数。本发明解决现有方法难以检测识别地下空洞目标的问题。
-
公开(公告)号:CN112363207A
公开(公告)日:2021-02-12
申请号:CN202011096296.3
申请日:2020-10-14
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于AODV协议的LoRa组网地震监测系统及监测方法,属于地震监测技术领域。地震监测系统包括:LoRa终端节点、LoRa基站、云服务器和用户平台,LoRa终端节点和LoRa基站数据互通,LoRa基站和云服务器数据互通,云服务器和用户平台数据互通。本发明借助LoRa通信实现了低功耗的用于地震监测的组网,同时解决了在地震发生时传统有线组网线路断路的问题,以及无线组网中的基站节点损坏情况下的数据传输问题,建立起稳定可靠的地震监测系统。
-
-
-
-
-
-