基于改进弱监督多特征融合的裂纹声发射信号识别方法

    公开(公告)号:CN116821737A

    公开(公告)日:2023-09-29

    申请号:CN202310676504.4

    申请日:2023-06-08

    Abstract: 本发明公开了一种基于改进弱监督多特征融合的裂纹声发射信号识别方法,所述方法包括如下步骤:一:加载从具有不同裂纹的钢轨获得的声发射信号,从这些声发射信号中提取25维特征,依据K‑means算法对特征进行聚类处理,根据聚类精度进行特征筛选,获得能够有效区分不同裂纹信息的特征集;二:将特征集输入到SCNN‑LSTM深度学习模型中,结合弱监督学习标签进行多特征融合,获得钢轨健康指数;三:依据钢轨健康指数的特性,构建自适应钢轨裂纹识别阈值,准确判别来自四段具有不同裂纹的钢轨的声发射信号,完成钢轨裂纹声发射信号识别。本发明运算速率快,识别精度高,在高铁钢轨裂纹伤损识别领域,具有很高的社会意义和经济价值。

    一种基于不平等距离优化聚类算法的伤损裂纹声发射信号检测方法

    公开(公告)号:CN112730628A

    公开(公告)日:2021-04-30

    申请号:CN202110155082.7

    申请日:2021-02-04

    Abstract: 一种基于不平等距离优化聚类算法的伤损裂纹声发射信号检测方法,涉及伤损裂纹信号处理与检测领域的方法,解决了传统裂纹信号检测方法速度慢、效率低的问题。本发明的步骤为:一、加载原始声发射信号,获得噪声声发射信号;二、对噪声声发射信号提取γ倒谱系数特征,依据自适应鲁棒系数对其进行筛选;三、将噪声信号特征聚类,计算各特征到各聚类质心的距离,计算各聚类的不平等优化距离值;提取待测声发射信号的γ倒谱系数特征,依照步骤二选择待测信号特征,计算各特征到各聚类质心的距离,依据不平距离优化判别算法,判别待测信号。本发明运算速率快,检测精度高。在高铁钢轨与车轮伤损裂纹检测领域,具有很高的社会意义和经济价值。

Patent Agency Ranking