-
公开(公告)号:CN117612711B
公开(公告)日:2024-05-03
申请号:CN202410087069.6
申请日:2024-01-22
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/20 , G06F18/213 , G06F18/25 , G06F18/24
Abstract: 本发明公开了一种分析肝癌复发数据的多模态预测模型构建方法及系统,通过将临床文本、影像、病理多个模态数据进行整合,基于多种模态数据和多种融合策略构建了分析肝癌复发数据的多模态预测模型,相比单模态建模,多模态建模能提高模型预测的准确性,弥补单一数据的局限性,本方案对各个模态的特征进行单独调优,全面反映肝癌复发数据的复杂机制,对于肝癌复发数据的分析更为完备,还能增强模型的泛化能力,更好地适用于医学应用场景,辅助临床决策。
-
公开(公告)号:CN117976198B
公开(公告)日:2024-06-21
申请号:CN202410366312.8
申请日:2024-03-28
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/20 , G06F16/35 , G06F18/214 , G06F18/2415 , G06N3/0455 , G06N3/0475 , G06N3/084 , G06N3/0895 , G06N3/094 , G06N3/096
Abstract: 本发明涉及医学跨域数据处理技术领域,尤其涉及基于数据筛选和对抗网络的医学跨域辅助诊断方法及装置;该方法能够在已知源域已标注电子病历文本数据数量的基础上,通过源域已标注电子病历文本数据的数量和目标域未标注电子病历文本数据的数量之间的关系公式,能够计算目标域未标注电子病历文本数据所需的数量,并采用权重随机抽样法,实现目标域未标注电子病历文本数据所需数量的筛选,随后将源域已标注电子病历文本数据和筛选出的目标域未标注电子病历文本数据进行合并训练,利用优化后的对抗网络,能够在保证模型效果的基础上,不仅加快模型的推理速度,还能够提高疾病诊断预测结果的准确率。
-
公开(公告)号:CN117976198A
公开(公告)日:2024-05-03
申请号:CN202410366312.8
申请日:2024-03-28
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/20 , G06F16/35 , G06F18/214 , G06F18/2415 , G06N3/0455 , G06N3/0475 , G06N3/084 , G06N3/0895 , G06N3/094 , G06N3/096
Abstract: 本发明涉及医学跨域数据处理技术领域,尤其涉及基于数据筛选和对抗网络的医学跨域辅助诊断方法及装置;该方法能够在已知源域已标注电子病历文本数据数量的基础上,通过源域已标注电子病历文本数据的数量和目标域未标注电子病历文本数据的数量之间的关系公式,能够计算目标域未标注电子病历文本数据所需的数量,并采用权重随机抽样法,实现目标域未标注电子病历文本数据所需数量的筛选,随后将源域已标注电子病历文本数据和筛选出的目标域未标注电子病历文本数据进行合并训练,利用优化后的对抗网络,能够在保证模型效果的基础上,不仅加快模型的推理速度,还能够提高疾病诊断预测结果的准确率。
-
公开(公告)号:CN117274750A
公开(公告)日:2023-12-22
申请号:CN202311573882.6
申请日:2023-11-23
Applicant: 神州医疗科技股份有限公司
IPC: G06V10/774 , G06N3/0464 , G06N3/084 , G06N3/096 , G06T7/00 , G06T7/11 , G06V10/26 , G06V10/28 , G06V10/44 , G06V10/74
Abstract: 本发明公开了一种知识蒸馏半自动可视化标注方法及系统,涉及数据标注技术领域。包括得到预训练后的医学图像分割模型,优化模型预训练损失;基于医学图像数据集采用无监督预训练方法得到的数据训练得到图像特征预测模型;将医学图像数据集输入医学图像分割模型和图像特征预测模型后,提取第一特征图和第二特征图;根据图像分割标注生成语义mask,用语义mask加权平均池化,得到第一特征向量和第二特征向量;计算第一特征向量和第二特征向量之间的余弦相似度,得到医学图像分割模型的蒸馏误差;合并预训练损失和蒸馏误差得到总损失,基于总损失优化医学图像分割模型。本发明实现了协作标注和隐私保护,提升了医学标注效率。
-
公开(公告)号:CN117612711A
公开(公告)日:2024-02-27
申请号:CN202410087069.6
申请日:2024-01-22
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/20 , G06F18/213 , G06F18/25 , G06F18/24
Abstract: 本发明公开了一种分析肝癌复发数据的多模态预测模型构建方法及系统,通过将临床文本、影像、病理多个模态数据进行整合,基于多种模态数据和多种融合策略构建了分析肝癌复发数据的多模态预测模型,相比单模态建模,多模态建模能提高模型预测的准确性,弥补单一数据的局限性,本方案对各个模态的特征进行单独调优,全面反映肝癌复发数据的复杂机制,对于肝癌复发数据的分析更为完备,还能增强模型的泛化能力,更好地适用于医学应用场景,辅助临床决策。
-
-
-
-