基于多重注意力机制长短时记忆网络的儿童情感识别方法

    公开(公告)号:CN109243494A

    公开(公告)日:2019-01-18

    申请号:CN201811273105.9

    申请日:2018-10-30

    Abstract: 本发明公开了一种基于多重注意力机制长短时记忆网络的儿童情感识别方法,将测试集语音进行端点检测且分帧切割,提取时序相关特征;对于长度不同的提取时序相关特征建立长短时记忆网络的处理算法;将注意力机制结合时序的深度的策略引入长短时记忆网络的遗忘门,输入门以及最终输出上;最后,将待测样本输入训练过程中的改进长短时记忆网络,可显著识别出其情感信息,本发明通过将注意力机制结合时序的深度引入长短时记忆网络的遗忘门,输出门,以及长短时记忆网络的最终输出上,在大量减少参数量的同时,提升了算法性能,增加了方法设计上的灵活性,且识别效率高,具有良好的应用前景。

    基于改进长短时记忆网络的婴儿哭声情感识别方法

    公开(公告)号:CN109243493A

    公开(公告)日:2019-01-18

    申请号:CN201811273025.3

    申请日:2018-10-30

    Abstract: 本发明公开了一种基于改进长短时记忆网络的婴儿哭声情感识别方法,将婴儿哭声数据集语音进行端点检测并分帧,提取该婴儿哭声数据集语音的时序相关特征,并针对不同长度的时序相关特征建立长短时记忆网络的处理算法;然后,将注意力机制结合时序的深度的策略引入长短时记忆网络的遗忘门,输入门上,实验结果显示,该方法不但能大量减少模型参数,而且在实录的婴儿情感数据库上体现出显著的识别性能,且识别效率高,具有良好的应用前景。

    基于域不变的小样本语音情感识别方法

    公开(公告)号:CN111402929A

    公开(公告)日:2020-07-10

    申请号:CN202010185119.6

    申请日:2020-03-16

    Abstract: 本发明公开了一种基于域不变的小样本语音情感识别方法,包括如下步骤:从数据库提取具有时序信息的语音特征;建立LSTM模型,确定待训练的参数及初值;通过多任务学习同时进行情感识别与数据库分类,采用交叉熵结合加权系数,建立损失函数;在数据库分类任务的梯度更新中采取梯度取反的对抗学习方法;在梯度反向传播过程中,按各数据库样本比例对共享层进行梯度加权,得到最终的梯度公式;得到训练好的网络参数值;用预训练好的共享层参数来初始化新的模型,并在未知数据集上重训练,然后用重训练的模型对小样本测试集进行测试验证。本发明利用已知的情感数据集为未知小样本数据提供预训练,提高未知小样本数据库的情感识别性能。

    基于域不变的小样本语音情感识别方法

    公开(公告)号:CN111402929B

    公开(公告)日:2022-09-20

    申请号:CN202010185119.6

    申请日:2020-03-16

    Abstract: 本发明公开了一种基于域不变的小样本语音情感识别方法,包括如下步骤:从数据库提取具有时序信息的语音特征;建立LSTM模型,确定待训练的参数及初值;通过多任务学习同时进行情感识别与数据库分类,采用交叉熵结合加权系数,建立损失函数;在数据库分类任务的梯度更新中采取梯度取反的对抗学习方法;在梯度反向传播过程中,按各数据库样本比例对共享层进行梯度加权,得到最终的梯度公式;得到训练好的网络参数值;用预训练好的共享层参数来初始化新的模型,并在未知数据集上重训练,然后用重训练的模型对小样本测试集进行测试验证。本发明利用已知的情感数据集为未知小样本数据提供预训练,提高未知小样本数据库的情感识别性能。

    基于改进长短时记忆网络的婴儿哭声情感识别方法

    公开(公告)号:CN109243493B

    公开(公告)日:2022-09-16

    申请号:CN201811273025.3

    申请日:2018-10-30

    Abstract: 本发明公开了一种基于改进长短时记忆网络的婴儿哭声情感识别方法,将婴儿哭声数据集语音进行端点检测并分帧,提取该婴儿哭声数据集语音的时序相关特征,并针对不同长度的时序相关特征建立长短时记忆网络的处理算法;然后,将注意力机制结合时序的深度的策略引入长短时记忆网络的遗忘门,输入门上,实验结果显示,该方法不但能大量减少模型参数,而且在实录的婴儿情感数据库上体现出显著的识别性能,且识别效率高,具有良好的应用前景。

    基于卷积双向长短时记忆网络的语音测谎方法

    公开(公告)号:CN108520753B

    公开(公告)日:2020-07-24

    申请号:CN201810159072.9

    申请日:2018-02-26

    Abstract: 本发明公开了一种基于卷积双向长短时记忆网络的语音测谎方法,包括将整段语音进行统一归一化处理;根据数据库标签对统一归一化处理的语音进行切分;对切分的语音加窗分帧处理;建立变长数据的计算方式;将卷积操作引入长短时记忆网络中;构建完整的语音测谎网络模型;训练语音测谎网络模型,并加窗分帧处理后的语音进行测谎评测。本发明通过将卷积操作引入长短时记忆网络中,构建完整的语音测谎网络模型,实现深度学习,从原始语音数据中提取适用于谎言检测的特征,以提高谎言检测的性能,具有良好的应用前景。

    基于多重注意力机制长短时记忆网络的儿童情感识别方法

    公开(公告)号:CN109243494B

    公开(公告)日:2022-10-11

    申请号:CN201811273105.9

    申请日:2018-10-30

    Abstract: 本发明公开了一种基于多重注意力机制长短时记忆网络的儿童情感识别方法,将测试集语音进行端点检测且分帧切割,提取时序相关特征;对于长度不同的提取时序相关特征建立长短时记忆网络的处理算法;将注意力机制结合时序的深度的策略引入长短时记忆网络的遗忘门,输入门以及最终输出上;最后,将待测样本输入训练过程中的改进长短时记忆网络,可显著识别出其情感信息,本发明通过将注意力机制结合时序的深度引入长短时记忆网络的遗忘门,输出门,以及长短时记忆网络的最终输出上,在大量减少参数量的同时,提升了算法性能,增加了方法设计上的灵活性,且识别效率高,具有良好的应用前景。

    一种基于卷积神经网络的言语置信度评测方法

    公开(公告)号:CN106901758B

    公开(公告)日:2019-10-25

    申请号:CN201710099098.4

    申请日:2017-02-23

    Abstract: 本发明公开了一种基于卷积神经网络的言语置信度评测方法。该方法首先对采集的语音样本进行分帧,并提取每帧的梅尔倒谱系数,构成单通道梅尔倒谱系数图像;然后构建六层卷积神经网络,构建前三层为使用尺寸不同的卷积滤波器的卷积层,第四层为生成全局特征图的聚合层,第五层和第六层为由2048个线性修正单元的全连层;最后将梅尔倒谱系数图像输入构建的卷积神经网络进行言语置信度评测。实验结果显示,该置信度评测方法对谎言的识别率达到73%。

    基于自联想神经网络和高斯混合背景模型相结合的说话人确认方法

    公开(公告)号:CN101814159B

    公开(公告)日:2013-07-24

    申请号:CN200910024432.5

    申请日:2009-02-24

    Abstract: 本发明公开了基于自联想神经网络和高斯混合背景模型相结合的说话人确认方法,利用本方法可以提高说话人确认系统的性能。本发明充分考虑了AANN和GMM各自的优点,把AANN嵌入到GMM-UBM,并且提出了一种两阶段的学习方法,交替更新GMM和AANN的参数,并以极大似然概率作为训练GMM和AANN的共同目标,这样使AANN能够学习特征向量间的差异,把特征向量集映射能增大似然概率的子空间,并且由于神经网络的学习特性可以进一步消除信道的不匹配效果。实验表明,采用本发明的说话人确认方法可以有效地降低系统的错误识别率。

    一种微麦克风阵列接收信号压缩编码及信号恢复方法

    公开(公告)号:CN103152672A

    公开(公告)日:2013-06-12

    申请号:CN201310110995.2

    申请日:2013-04-03

    Abstract: 本发明提出了一种微麦克风阵列接收信号压缩编码及信号恢复方法。其具体方法是对每个时刻微麦克风阵列接收的信号进行压缩变换,并对压缩变换后的信号进行编码。压缩变换矩阵为对角元为1的下三角阵,其非对角元系数由自适应过程更新。自适应过程及其代价函数在更新过程中最小化压缩变换后的信号能量,对各麦克风阵元接收信号解相关,消除各阵元信号之间的冗余信息。每一时刻的压缩编码信号可以通过压缩变换矩阵的逆矩阵恢复出原始接收信号。由于压缩变换矩阵始终保持对角元为1的下三角阵,所以其逆矩阵始终存在,信号恢复过程稳定可靠。

Patent Agency Ranking