基于虚拟环境模仿重构和强化学习的无人机飞行控制方法

    公开(公告)号:CN113467515B

    公开(公告)日:2023-03-10

    申请号:CN202110828301.3

    申请日:2021-07-22

    Applicant: 南京大学

    Abstract: 本发明公开一种基于虚拟环境模仿重构和强化学习的无人机飞行控制方法,利用在真实飞行环境中采集到的状态转移历史轨迹数据,利用GAIL+BC算法构建基于模仿学习的虚拟环境;在虚拟环境中利用强化学习算法训练无人机飞行策略;将策略迁移到真实环境中。本发明使无人机能够在复杂多变的环境中,实现有效,稳定的自主飞行控制;通过利用历史交互数据构建虚拟环境,并让强化学习Agent在虚拟环境中训练的方式,避免了强化学习的高试错成本弊端,同时不再依赖专家知识和人力,并提高了模型对特殊环境状态的适应能力。通过GAIL算法和BC算法两种算法的结合,避免了基于纯模仿学习算法的收敛性问题,也避免了纯BC算法的模型偏移问题,解决了传统的虚拟环境重构算法的应用难题。

    一种基于最大熵强化学习框架的无人驾驶车道保持方法

    公开(公告)号:CN113276852B

    公开(公告)日:2022-09-23

    申请号:CN202110375328.1

    申请日:2021-04-08

    Applicant: 南京大学

    Abstract: 本发明公开一种基于最大熵强化学习框架的无人驾驶车道保持方法,包括:(1)创建无人车仿真道路环境;设置环境车行驶策略和行人的运动模型,设计奖励函数以及碰撞检测条件;(2)利用深度神经网络近似状态值函数、动作值函数以及策略,并初始化网络参数;(3)获得无人车初始状态,使其与环境交互,收集数据,并存储到缓冲池;(4)对状态值函数网络、动作值函数网络以及策略网络进行更新;(5)对目标值函数网络进行更新,直到策略网络将近收敛;(6)将状态值网络优化目标中熵项系数置零,继续训练直到策略网络完全收敛;(7)对于训练好的策略模型,根据网络输出的动作概率分布,选择概率值最大的动作给无人车执行。

    一种基于离线强化学习的无人机自主飞行控制方法

    公开(公告)号:CN113110546B

    公开(公告)日:2022-09-23

    申请号:CN202110422019.5

    申请日:2021-04-20

    Applicant: 南京大学

    Abstract: 本发明公开一种基于离线强化学习的无人机自主飞行控制方法,包含以下步骤:(1)人为控制无人机执行飞行任务,收集无人机在现实环境中的飞行数据,生成数据集。(2)基于数据集,根据飞行状态和动作设计奖赏函数。(3)基于离线强化学习算法,仅利用数据集训练自主飞行控制策略。(4)在现实环境中,使用自主飞行控制策略操控无人机执行飞行任务,无人机操作员实时监控,测试控制策略性能并收集飞行数据。(5)把收集的新飞行数据加入数据集。(6)迭代执行步骤(2)(3)(4)(5),直到自主飞行控制策略能够完成飞行任务。本发明能够以很低的成本训练出泛化性好、鲁棒的自主飞行控制策略,适用于复杂多变的现实环境。

    一种基于多智能体强化学习的无人机集群高效通信方法

    公开(公告)号:CN113286275A

    公开(公告)日:2021-08-20

    申请号:CN202110441049.0

    申请日:2021-04-23

    Applicant: 南京大学

    Abstract: 本发明公开一种基于多智能体强化学习的无人机集群高效通信方法,构建无人机飞行环境模拟器;随机选取一架无人机作为队长并标记;每架无人机获取并维护本机的局部观测值,将自身观测值进行编码并发送给队长;队长根据每架无人机的自身观测值,分别对全局观测值进行attention注意力机制处理,根据信息的重要程度来决定信息的权重,继而将计算好的观测值发送给每个队友,作为队友的全局观测值;训练阶段以全局观测值作为训练数据,直到策略网络收敛;执行阶段以分布式的方式进行;对队长的存活给一个额外的奖励。本发明可以在通信开销较小的条件下解决无人机集群集中式信息交互的问题,给予无人机自主决策权。

    一种提高集成型自动机器学习运行性能的方法和系统

    公开(公告)号:CN114003393A

    公开(公告)日:2022-02-01

    申请号:CN202111639857.4

    申请日:2021-12-30

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于双层树的提高集成型自动机器学习运行性能的方法和系统,对于模型选择和超参数调优两个过程采用了双层树式的逻辑关系。通过极限区域上置信界算法对双层树式的上下两层进行迭代计算。根据机器学习模型库中各模型的初始化分数,自适应地将各模型分配到合适的线程上,有前景的模型将得到更多的初始线程分配。以不同模型和不同超参数配置下的评估指标的分数和运行时间为依据,选择其中若干个模型,基于选中的模型生成集成模型。本发明使自动机器学习方法可以在相同的计算资源下得到更好的最终效果。

    基于虚拟环境模仿重构和强化学习的无人机飞行控制方法

    公开(公告)号:CN113467515A

    公开(公告)日:2021-10-01

    申请号:CN202110828301.3

    申请日:2021-07-22

    Applicant: 南京大学

    Abstract: 本发明公开一种基于虚拟环境模仿重构和强化学习的无人机飞行控制方法,利用在真实飞行环境中采集到的状态转移历史轨迹数据,利用GAIL+BC算法构建基于模仿学习的虚拟环境;在虚拟环境中利用强化学习算法训练无人机飞行策略;将策略迁移到真实环境中。本发明使无人机能够在复杂多变的环境中,实现有效,稳定的自主飞行控制;通过利用历史交互数据构建虚拟环境,并让强化学习Agent在虚拟环境中训练的方式,避免了强化学习的高试错成本弊端,同时不再依赖专家知识和人力,并提高了模型对特殊环境状态的适应能力。通过GAIL算法和BC算法两种算法的结合,避免了基于纯模仿学习算法的收敛性问题,也避免了纯BC算法的模型偏移问题,解决了传统的虚拟环境重构算法的应用难题。

    一种基于课程学习的无人机空中博弈对抗的解决方法

    公开(公告)号:CN113282061A

    公开(公告)日:2021-08-20

    申请号:CN202110445367.4

    申请日:2021-04-25

    Applicant: 南京大学

    Abstract: 本发明公开一种基于课程学习的无人机空中博弈对抗的解决方法,包含以下步骤:(1)构建仿真模拟环境;(2)收集飞行员控制飞机的真实轨迹数据,将轨迹数据按照机动动作难度进行课程目标分类;(3)对指定课程目标下的轨迹,通过模仿学习来优化策略模型生成的轨迹和专家轨迹的相似度;(4)获得预训练无人机策略模型;(5)基于预训练无人机策略模型,在模拟器中创建敌我双方无人机智能体;(6)无人机在模拟器中获得当前时刻的观测;(7)无人机与模拟环境进行交互,将我方与敌方无人机对抗的任务建模为一个强化学习智能体与环境交互的问题,用强化学习算法优化无人机对抗的飞行策略;(8)获得无人机进行空中博弈对抗的有效策略。

    一种基于强化学习与网络模型蒸馏的无人机飞行控制方法

    公开(公告)号:CN113110550A

    公开(公告)日:2021-07-13

    申请号:CN202110442229.0

    申请日:2021-04-23

    Applicant: 南京大学

    Abstract: 本发明公开一种基于强化学习与网络模型蒸馏的无人机飞行控制方法,构建无人机环境模拟器;基于强化学习算法,在不同场景中进行大规模训练,得到最优控制策略,以此构建无人机飞行控制系统;基于网络模型蒸馏技术,通过教师网络和学生网络计算辅助控制信息,量化当前场景与训练场景的差异,展示强化学习控制策略对当前场景的适应能力,以此构建无人机辅助控制系统。本发明基于强化学习算法,通过在模拟器中大规模训练,使无人机自主学习控制策略,构建无人机控制系统;基于网络模型蒸馏技术,通过量化当前场景与训练场景的差异,展示强化学习控制策略对当前场景的适应程度,以此规避陌生场景,减少安全风险。

    一种基于离线强化学习的无人机自主飞行控制方法

    公开(公告)号:CN113110546A

    公开(公告)日:2021-07-13

    申请号:CN202110422019.5

    申请日:2021-04-20

    Applicant: 南京大学

    Abstract: 本发明公开一种基于离线强化学习的无人机自主飞行控制方法,包含以下步骤:(1)人为控制无人机执行飞行任务,收集无人机在现实环境中的飞行数据,生成数据集。(2)基于数据集,根据飞行状态和动作设计奖赏函数。(3)基于离线强化学习算法,仅利用数据集训练自主飞行控制策略。(4)在现实环境中,使用自主飞行控制策略操控无人机执行飞行任务,无人机操作员实时监控,测试控制策略性能并收集飞行数据。(5)把收集的新飞行数据加入数据集。(6)迭代执行步骤(2)(3)(4)(5),直到自主飞行控制策略能够完成飞行任务。本发明能够以很低的成本训练出泛化性好、鲁棒的自主飞行控制策略,适用于复杂多变的现实环境。

Patent Agency Ranking