一种双金属普鲁士蓝类似物催化剂的制备方法及应用

    公开(公告)号:CN113908878B

    公开(公告)日:2023-03-24

    申请号:CN202111239018.3

    申请日:2021-10-25

    Applicant: 南京大学

    Abstract: 本发明公开了一种双金属普鲁士蓝类似物催化剂的制备方法及其应用。该催化剂以表面活性剂、铁氰化钾和稀土金属铈盐作为前驱体,通过时间、pH、溶剂和温度等参数调控,采用一步法结晶生长富含不饱和活性位点的双金属普鲁士蓝类似物结构;采用该催化剂,可在可见光、近中性条件下高效活化过氧化氢并去除水中难降解有机物;该催化剂充分发挥了不饱和活性位点、光生载流子以及双金属氧化还原对的多效协同作用,成功克服了传统芬顿氧化过程中铁循环速率慢、过氧化氢利用率低等问题;该催化剂以储量丰富、成本低廉的铁盐和铈盐为原料采用一步法制备,具有活性高、稳定性高和环境友好等优点,应用前景广阔。

    高效活化过硫酸盐的氮掺杂碳载Fe-Co双金属单原子催化剂及其制备方法

    公开(公告)号:CN113198511B

    公开(公告)日:2022-08-02

    申请号:CN202110507041.X

    申请日:2021-05-10

    Applicant: 南京大学

    Abstract: 本发明涉及环境新材料领域,特别涉及高效活化过硫酸盐的氮掺杂碳载Fe‑Co双金属单原子催化剂及其制备方法;本发明以锆基金属有机框架UIO‑66‑NH2为载体,利用氨基的配位作用吸附铁钴前体,在惰性气氛中热解后经酸洗除去金属锆纳米颗粒,制得氮掺杂碳载Fe‑Co双金属单原子催化剂;该催化剂通过配位作用将单原子Fe、Co锚定在氮掺杂碳基体上,具有超大的比表面积以及高密度的单原子催化位点,并可充分发挥Fe、Co双金属单原子的协同作用,实现高效活化过硫酸盐快速降解水中毒害有机污染物,从而大幅节约催化剂与氧化剂用量,经济技术优势显著。

    一种双金属普鲁士蓝类似物催化剂的制备方法及应用

    公开(公告)号:CN113908878A

    公开(公告)日:2022-01-11

    申请号:CN202111239018.3

    申请日:2021-10-25

    Applicant: 南京大学

    Abstract: 本发明公开了一种双金属普鲁士蓝类似物催化剂的制备方法及其应用。该催化剂以表面活性剂、铁氰化钾和稀土金属铈盐作为前驱体,通过时间、pH、溶剂和温度等参数调控,采用一步法结晶生长富含不饱和活性位点的双金属普鲁士蓝类似物结构;采用该催化剂,可在可见光、近中性条件下高效活化过氧化氢并去除水中难降解有机物;该催化剂充分发挥了不饱和活性位点、光生载流子以及双金属氧化还原对的多效协同作用,成功克服了传统芬顿氧化过程中铁循环速率慢、过氧化氢利用率低等问题;该催化剂以储量丰富、成本低廉的铁盐和铈盐为原料采用一步法制备,具有活性高、稳定性高和环境友好等优点,应用前景广阔。

    高效活化过硫酸盐的氮掺杂中空碳多面体@碳纳米管基单原子钴催化剂及其制备方法

    公开(公告)号:CN112169822B

    公开(公告)日:2021-11-16

    申请号:CN202011134982.5

    申请日:2020-10-21

    Applicant: 南京大学

    Abstract: 本发明涉及环境新材料领域,特别涉及高效活化过硫酸盐的氮掺杂中空碳多面体@碳纳米管基单原子钴催化剂及其制备方法;本发明以ZIF‑8为晶种,通过外延生长法在其表面生长ZIF‑67,得到具有核壳结构的ZIF‑8@ZIF‑67,然后在惰性气氛中煅烧得到碳化后的ZIF‑8@ZIF‑67,再经酸洗除去暴露的钴纳米颗粒后制得氮掺杂中空碳多面体@碳纳米管基单原子钴催化剂;该催化剂通过配位作用将单原子钴锚定在碳基体上,催化位点密度高、导电性佳、铁磁性好,可高效活化过硫酸盐降解水中毒害有机污染物,大幅节约催化剂和过硫酸盐用量,并且本发明首次实现了中空碳多面体、碳纳米管及单原子钴多组份综合调控,可在广泛温度范围内以及无机盐、天然有机物等干扰下高效稳定运行,应用前景广阔。

    一种磁性导电高分子协同微波还原水中六价铬的方法

    公开(公告)号:CN107352730B

    公开(公告)日:2020-09-18

    申请号:CN201710699801.5

    申请日:2017-08-16

    Applicant: 南京大学

    Abstract: 本发明属于重金属废水处理领域,特别涉及一种磁性导电高分子协同微波还原水中六价铬的方法,将含有六价铬的废水用无机酸或小分子有机酸调节溶液pH至酸性,加入核壳结构的磁性导电高分子材料,混匀后转移至微波化学反应器中进行反应,将废水中的六价铬还原成三价铬,后用永磁铁分离回收所述磁性导电高分子材料;利用磁性导电高分子对六价铬的表面富集和对微波能量的有效吸收,在微波场中实现高毒性六价铬的高效还原;该方法相比其他技术,动力学优势明显;微波可同步实现磁性导电高分子的再生,采用磁分离回收的材料可循环回用;该方法简单、高效、易于工业化,经济和环境效益显著。

Patent Agency Ranking