-
公开(公告)号:CN107403414A
公开(公告)日:2017-11-28
申请号:CN201710572664.9
申请日:2017-07-14
Applicant: 华中科技大学
Abstract: 本发明公开了一种利于模糊核估计的图像区域选择方法和系统,其中方法的实现包括:计算模糊图像中每一像素点的相对总变分值并得到其相对总变分映射图;设定阈值确定图像中每一像素点是否为边界像素点;再对模糊图像以及其相对总变分映射图进行采样,得到一系列图像块;最后统计每一图像块中边界像素点的数量并选择出有利于模糊核估计的图像区域。本发明有效解决了现有区域选择方法中存在的过于依赖操作者经验,效率低等问题,自动选择出有利于模糊核估计的图像区域,适用于图像去模糊算法中模糊核估计的应用场合。
-
公开(公告)号:CN107194365A
公开(公告)日:2017-09-22
申请号:CN201710416188.1
申请日:2017-06-06
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于中层特征的行为识别方法与系统,其中方法的实现包括:从样本图像序列中得到候选部件检测器集;移除候选部件检测器集中B%的判别能力弱的部件检测器,得到新的候选部件检测器集;根据新的候选部件检测器集中每个部件检测器的权重进行由大到小的排序,选择排序靠前的P个部件检测器作为A类行为类别的中层特征提取器;获取行为类别中每一类行为类别的中层特征提取器,组合成词袋,利用词袋提取样本图像序列的样本中层特征,利用样本中层特征训练分类器,得到行为识别分类器;将测试图像序列输入行为识别分类器,得到测试图像序列的行为类别。本发明识别能力强、识别准确率高、实用性强、保留了部件之间的关联性。
-
公开(公告)号:CN106447626A
公开(公告)日:2017-02-22
申请号:CN201610806072.4
申请日:2016-09-07
Applicant: 华中科技大学
CPC classification number: G06T5/00 , G06T5/003 , G06T7/0002 , G06T2207/20081 , G06T2207/20084
Abstract: 本发明公开了一种基于深度学习的模糊核尺寸估计方法,属于模式识别技术领域。该方法首先根据模糊图样属性选择采用降采样或尺寸截取进行预处理,得到尺寸满足需求的输入图像;之后,将图像输入至已完成训练的多分类卷积神经网络中,通过不同层的权值计算,得到一个概率分布向量;最后,通过比较向量中各元素的大小,取值最大的元素所对应图像类别代表的模糊核尺寸即为模糊图像尺寸大小的估计结果。本发明还实现了一种基于深度学习的模糊核尺寸估计系统。本发明为现有图像去模糊算法提供了更具科学依据的模糊核尺寸作为输入参数,有效解决了现有方法中存在的尺寸盲目输入以及无法提供直接的输入值等问题。
-
-