一种基于低分辨率先验信息的自适应编码方法

    公开(公告)号:CN112785662B

    公开(公告)日:2023-07-25

    申请号:CN202110117326.2

    申请日:2021-01-28

    Abstract: 本发明公开了一种基于低分辨率先验信息的自适应编码方法,包括:利用低分辨率图像整体的灰度值和方差,估计原光谱图像对应各图像块的均值和方差,所述图像块为原光谱图像分别与低分辨率图像各点对应的场景信息子区域;根据各所述图像块的均值和方差,计算原光谱图像场景信息的图像块的阈值分布。利用所述低分辨率图像构建原光谱图像的近似图像。基于原光谱图像的近似图像及其对应的阈值分布,以最大化观测矩阵和稀疏矩阵之间的相关性为设计目的,利用抖色方法生成自适应编码矩阵。本发明无需重构过程提供高分辨率先验信息,利用压缩光谱成像系统中所能获取的低分辨率光谱信息即可生成自适应编码矩阵,也无需增加额外的探测过程和探测器件。

    机器学习优化稀疏基的高光谱全偏振图像压缩重构方法

    公开(公告)号:CN111426383B

    公开(公告)日:2022-05-10

    申请号:CN202010303994.X

    申请日:2020-04-17

    Abstract: 本发明公开了一种机器学习优化稀疏基的高光谱全偏振图像压缩重构方法,采用四分之一波片与具有线偏振特性的器件组合将图像成像于探测器,通过切换四分之一波片的快轴角度和/或具有线偏振特性的器件的透光轴角度实现不同的全偏振调制方式;采用该全偏振调制方式对任一波段的全偏振局部图像进行处理,获得压缩信息;采用粒子群算法优化稀疏基,优化后的稀疏基使得利用压缩信息重构的全偏振局部图像逼近其原图像。应用时,采用上述全偏振调制方式对高光谱全偏振图像进行偏振调制,获得压缩信息,并利用优化稀疏基获得重构的高光谱全偏振图像。采用本发明能够实现高光谱图像四个斯托克斯参量的重构,提高四个斯托克斯参量的重构精度。

    基于低分辨率先验信息互补编码的场景重建方法和系统

    公开(公告)号:CN112802136B

    公开(公告)日:2022-11-15

    申请号:CN202110116368.4

    申请日:2021-01-28

    Abstract: 本发明公开了一种基于低分辨率先验信息互补编码的场景重建方法和系统。过程包括利用压缩光谱成像系统分别加载快照式编码模板和随机编码模板对场景成像,获取场景的低分辨率光谱信息和压缩编码信息;根据场景的低分辨率光谱信息和压缩观测信息,获取场景的互补压缩编码信息;将场景的压缩观测信息与互补压缩编码信息作为约束项,加入重构场景的目标函数;根据设置的求解方法,求解目标函数,解出原始的场景信息。本发明在观测次数较少时,相比传统的随机编码方法,重构质量更好;对于不同光谱波段,相比传统的随机编码方法,重构图像的质量更稳定、更好。并且,本发明在重构过程中,互补编码信息作为额外的约束项,充分利用了低分辨率先验信息,提高了重构场景信息的质量。

    斯托克斯参量分块的全偏振高光谱图像压缩重构方法

    公开(公告)号:CN111998945B

    公开(公告)日:2022-11-01

    申请号:CN202010846546.4

    申请日:2020-08-21

    Abstract: 本发明公开了一种斯托克斯参量分块的全偏振高光谱图像压缩重构方法,能够增加偏振压缩的自由度,提高偏振重构的针对性和重构精度,缩短整体重构用时。采用四分之一波片与液晶可调滤波器组合将待测全偏振高光谱图像成像于探测器,选取四分之一波片快轴角度和液晶可调滤波器入射面角度实现不同全偏振调制方式。对于1种快轴角度和2种入射面角度的组合,利用求和法求解第一个斯托克斯参量S0,再重构后三个斯托克斯参量S1S2S3;对于2~3种快轴角度和1种入射面角度的组合,利用求差法重构S1S2S3,再求解S0;对于1~3种快轴角度和1种入射面角度的组合,利用缩放法重构S0,再重构S1S2S3。最终获得重构的全偏振高光谱图像。

    基于液晶高光谱计算成像系统的三维自适应压缩重构方法

    公开(公告)号:CN113008370A

    公开(公告)日:2021-06-22

    申请号:CN202110228167.3

    申请日:2021-03-02

    Abstract: 本发明公开了一种基于液晶高光谱计算成像系统的三维自适应压缩重构方法,液晶高光谱计算成像系统包括LCTF、编码孔径、探测器和光学透镜。方法包括:采集LCTF在各光谱通道下的低分辨率图像,获得低分辨率数据立方体;进行插值操作,快速得到高分辨率的高光谱数据立方体;利用自适应编码规则,基于高光谱数据立方体生成各滤波波段所需的自适应编码孔径;通过自适应编码孔径分别获取各光谱通道下的压缩测量值;基于压缩感知理论,根据系统的观测矩阵、稀疏基和压缩测量值,重构出高分辨率的目标光谱数据立方体。本发明利用先验信息设计自适应编码孔径和空‑谱联合字典,使得本发明对目标场景有很强的适应性,能够提升成像质量。

    基于低分辨率先验信息互补编码的场景重建方法和系统

    公开(公告)号:CN112802136A

    公开(公告)日:2021-05-14

    申请号:CN202110116368.4

    申请日:2021-01-28

    Abstract: 本发明公开了一种基于低分辨率先验信息互补编码的场景重建方法和系统。过程包括利用压缩光谱成像系统分别加载快照式编码模板和随机编码模板对场景成像,获取场景的低分辨率光谱信息和压缩编码信息;根据场景的低分辨率光谱信息和压缩观测信息,获取场景的互补压缩编码信息;将场景的压缩观测信息与互补压缩编码信息作为约束项,加入重构场景的目标函数;根据设置的求解方法,求解目标函数,解出原始的场景信息。本发明在观测次数较少时,相比传统的随机编码方法,重构质量更好;对于不同光谱波段,相比传统的随机编码方法,重构图像的质量更稳定、更好。并且,本发明在重构过程中,互补编码信息作为额外的约束项,充分利用了低分辨率先验信息,提高了重构场景信息的质量。

    偏振光谱特征融合的水中氨氮检测方法

    公开(公告)号:CN114965293B

    公开(公告)日:2025-05-09

    申请号:CN202210504116.3

    申请日:2022-05-10

    Abstract: 本发明提供了一种偏振光谱特征融合的水中氨氮检测方法,用于偏振光谱特征融合系统,系统包括光源、反射镜、四分之一波片、线偏振片、光纤透镜和光纤光谱仪;方法包括:C1:通过系统基于目标水样,采集偏振调制光谱;C2:解调目标水样反射光波的四个斯托克斯参量光谱;C3:选取不同数量的偏振调制光谱和斯托克斯参量光谱分别进行光谱特征融合;C4:基于氨氮浓度不同的目标水样的特征融合光谱,进行光谱分类。本发明实现了基于偏振特征融合光谱检测水中氨氮,通过光与物质之间的相互作用,无需使用辅助试剂,准确的检测水中氨氮浓度。

    液晶高光谱计算成像系统的三维数据重构方法

    公开(公告)号:CN112229514B

    公开(公告)日:2023-04-18

    申请号:CN202011054740.5

    申请日:2020-09-27

    Abstract: 本发明提供一种液晶高光谱计算成像系统的三维数据重构方法,搭建了一个适用于液晶高光谱计算成像系统的卷积神经网络,将计算成像系统获取的压缩观测结果和系统响应共同作为网络输入,经过多个隐藏层,最终输出重构后的高分辨率三维数据;其中,系统响应包括系统的空间响应和光谱响应,分别表示系统对入射场景的空间和光谱编码作用。本发明在卷积神经网络的框架下进行压缩观测数据的计算重构,同时考虑压缩数据和系统响应,在训练数据足够多的情况下,该网络可以适应不同的编码模板和各种类型的计算光谱成像系统,快速准确地获取重构后的三维数据。

    基于液晶高光谱计算成像系统的三维自适应压缩重构方法

    公开(公告)号:CN113008370B

    公开(公告)日:2022-06-14

    申请号:CN202110228167.3

    申请日:2021-03-02

    Abstract: 本发明公开了一种基于液晶高光谱计算成像系统的三维自适应压缩重构方法,液晶高光谱计算成像系统包括LCTF、编码孔径、探测器和光学透镜。方法包括:采集LCTF在各光谱通道下的低分辨率图像,获得低分辨率数据立方体;进行插值操作,快速得到高分辨率的高光谱数据立方体;利用自适应编码规则,基于高光谱数据立方体生成各滤波波段所需的自适应编码孔径;通过自适应编码孔径分别获取各光谱通道下的压缩测量值;基于压缩感知理论,根据系统的观测矩阵、稀疏基和压缩测量值,重构出高分辨率的目标光谱数据立方体。本发明利用先验信息设计自适应编码孔径和空‑谱联合字典,使得本发明对目标场景有很强的适应性,能够提升成像质量。

Patent Agency Ranking