一种基于动态前缀提示信息的事件抽取方法

    公开(公告)号:CN115017316A

    公开(公告)日:2022-09-06

    申请号:CN202210669824.2

    申请日:2022-06-14

    Inventor: 黄河燕 刘啸

    Abstract: 本发明涉及一种基于动态前缀提示信息的事件抽取方法,属于计算机自然语言处理技术领域。本方法根据输入文本结合所有可能的事件类型,动态构造可调整的稠密的前缀信息,由此增强前缀信息的表现力,提高了数据的利用率。同时,利用相关性分类器将不包含事件实例的文本排除,减少了不相关信息的干扰。本方法克服了现有的基于生成的事件抽取方法中人工构造离散提示文本的次优性,事件类型信息与文本上下文相隔绝等技术缺陷。本方法在精确率、召回率、F1值评测指标等方面都有显著提升。

    一种基于计算机视觉的识别脚型尺寸的方法

    公开(公告)号:CN117115226B

    公开(公告)日:2024-08-30

    申请号:CN202311049171.9

    申请日:2023-08-21

    Inventor: 黄河燕 郭存涵

    Abstract: 本申请提供一种基于计算机视觉的识别脚型尺寸的方法,方法包括:步骤1,图片获取:分别获取被测量者脚放置于白纸上的侧视图,以及俯视图;步骤2,进行图片缩放处理;步骤3,利用多重阈值分割法,分别对A4纸和脚部轮廓进行分割,再使用全新透视矫正法对A4纸轮廓进行矫正,使用掩码法获取目标的脚部区域图像;步骤4,进行俯视图处理获得最大脚宽:分别对A4纸和脚部轮廓进行分割,在使用简易矫正法对A4纸轮廓进行矫正,获取目标的脚部区域图像后,确定目标参数。

    一种政务智能问答方法
    15.
    发明公开

    公开(公告)号:CN118153686A

    公开(公告)日:2024-06-07

    申请号:CN202410116003.5

    申请日:2024-01-26

    Abstract: 本发明提供一种智能政务问答的方法,包括下列步骤:S1、利用政务文件搭建政务知识库以及问答数据集;S2、通过开源模型中的指令跟随功能,对知识库文件进行提问,生成政务问答训练数据;S3、通过训练好的预训练语言模型,基于用户查询的政策问题,从政务知识数据库中粗粒度匹配相关的政策文件;S4、将政策文件切分成政策段落,并将问题和政策段落输入训练好的预训练语言模型,引导模型与问题最相关的政策段落匹配;S5、将问题和政策段落构建成提示语,并将提示语输入到训练好的大语言模型,引导训练好的大语言模型生成问题的回答。本发明可以在准确回答的基础上做到多样性生成,用户可以提问其关心的政策内容,并实时获取最新政策内容的解答。

    基于多表征和多预训练模型的中文拼写纠错方法及装置

    公开(公告)号:CN113627158A

    公开(公告)日:2021-11-09

    申请号:CN202110751495.1

    申请日:2021-07-02

    Inventor: 黄河燕 顾雅涵

    Abstract: 本申请提出了基于多表征和多预训练模型的中文拼写纠错方法及装置,方法包括:将待纠错中文中的每个字进行融合词边界以及提取偏旁特征处理,获取带有特征值的待纠错中文;特征值包括词边界特征值以及偏旁特征值;将带有特征值的待纠错中文输入预先训练好的错字识别模型中,获取识别出的待纠正字;用预先设定的标记替换待纠正字,获取中间待纠错中文;将中间待纠错中文输入预先训练好的多预训练模型中,从预先设定好的混淆集中选出目标正确字替换待纠正字,获取纠正后的中文。本申请提供的方法能从多个角度识别出拼写错误,提高了拼写纠错的准确率。

    一种基于大模型智能匹配招投标文件的方法

    公开(公告)号:CN119830861A

    公开(公告)日:2025-04-15

    申请号:CN202411683578.1

    申请日:2024-11-22

    Abstract: 本申请提供一种基于大模型智能匹配招投标文件的方法,方法包括:步骤一、对招投标文件进行预处理;步骤二、对预处理后的文档进行数据清洗,以建立预训练数据集;步骤三、对数据清洗后的txt文本进行处理,将txt文本拆分成多个指标项;步骤四、利用大模型中的指令跟随功能,对指标文本中的各项指标进行提问,从而生成微调数据集;步骤五、基于基座大模型进行预训练和微调;步骤六、将提示语、指标项和对应投标文件片段构建成模板,并将模板输入到训练好的大语言模型中,引导训练好的大语言模型推理回答。本申请提升大模型在专业领域回答准确性,从而使模型在回答时表现得更为出色。

Patent Agency Ranking