一种基于注意力金字塔的SAR船只目标检测方法

    公开(公告)号:CN114419490B

    公开(公告)日:2024-09-03

    申请号:CN202111627620.4

    申请日:2021-12-28

    Abstract: 本发明提供一种基于注意力金字塔的SAR船只目标检测方法,将SAR图像输入到特征提取网络得到初步的特征提取结果;对初步提取到的特征输入到基于通道注意力和空间注意力的特征金字塔网络,得到更加精细化的特征提取结果。相较于传统的SAR图像船只检测方法,本方案通过先对SAR图像完成初步的特征提取,然后利用通道注意力和空间注意力特征金字塔网络对提取到的初步特征进行精修,提高了船只的检测和识别精度;尤其在针对复杂背景下的船只检测任务,本方案提出的基于通道注意力和空间注意力的特征金子塔网络可以使模型具有更高的检测和识别效果。

    一种基于自监督学习的SAR图像的去噪方法

    公开(公告)号:CN116503266A

    公开(公告)日:2023-07-28

    申请号:CN202310248972.1

    申请日:2023-03-15

    Abstract: 本发明提供了一种基于自监督学习的SAR图像去噪方法,包括构建SAR噪声图像模型;构建最小化经验损失函数L;设计相邻同向子采样器;将噪声图像对作为输入和目标,修改经验风险最小化任务,构建自监督SAR图像去噪网络;设计多特征损失函数;使用上述方法,对SAR‑CNN去噪网络进行训练;将待去噪的SAR图像变换到log域后输入到网络中进行去噪,再通过反log变换得到输出图像。相比于现有技术,本发明可以迁移到任何现有的去噪网络上,实现在没有干净目标的情况下进行训练实现自监督去噪,并且本方法显著抑制了散斑噪声,同时可靠地保留了图像纹理细节等特征,解决了目前散斑数据和真实SAR图像自监督去噪实用性较差的问题。

    基于存算结合的多通道卷积FPGA架构及其工作方法

    公开(公告)号:CN113673691A

    公开(公告)日:2021-11-19

    申请号:CN202110944948.2

    申请日:2021-08-17

    Abstract: 本发明提供一种基于存算结合的多通道卷积FPGA架构及其工作方法,包括:外部存储器、特征图片上缓存模块、卷积权重片上缓存模块和卷积计算模块;外部存储器包括有第一外部存储器和第二外部存储器,第一外部存储器向特征图片上缓存模块输出特征图数据,第二外部存储器向卷积权重片上缓存模块输出卷积权重;特征图片上缓存模块和卷积权重片上缓存模块均与卷积计算模块连接,分别向卷积计算模块输出多个特征图数据窗口和多个卷积权重窗口;卷积计算模块根据特征图数据窗口和卷积权重窗口进行计算,并输出计算结果。本发明通过多通道并行输出数据流的方式,实现存算结合,提高了FPGA架构的数据传输效率。

    基于网络架构搜索的多模态图像土地覆盖类型分类方法

    公开(公告)号:CN116486142A

    公开(公告)日:2023-07-25

    申请号:CN202310293181.0

    申请日:2023-03-24

    Abstract: 本发明提供了一种基于网络架构搜索的多模态图像土地覆盖类型分类的方法,包括S1、利用特征提取网络对输入的成对光、SAR遥感图像进行特征提取;S2、构建基于SMBO算法的多模态特征融合架构搜索空间,搜索最佳的融合策略;S3、根据所述融合策略对光、SAR特征进行融合,得到土地覆盖类型分类结果。本发明提出了双输入的U型特征提取网络,使网络可以获得更充分的信息用于分类,并考虑到传统人工设计的深度学习特征融合模块难度大且缺乏可解释性,创建了基于SMBO的多模态特征融合架构搜索方法探求不同模态特征间的最佳组合方式,提高光、SAR图像特征融合效率。

    显式轮廓引导和空间变化上下文增强的遥感目标检测方法

    公开(公告)号:CN115830449A

    公开(公告)日:2023-03-21

    申请号:CN202211530957.8

    申请日:2022-12-01

    Abstract: 本发明提供一种显式轮廓引导和空间变化上下文增强的遥感目标检测方法,通过特征提取网络,得到输入图像的多尺度目标特征图,通过空间变化上下文增强算法将最深层特征图的空间位置信息编码到全局上下文中,得到空间变化上下文卷积核,并结合预设空洞率,得到多尺度上下文感知空间变化加权因子,加权得到空间感知上下文增强目标特征图;通过特征融合网络和轮廓引导特征提取算法,分别得到多尺度目标融合特征图和轮廓感知特征图;结合轮廓引导特征融合算法和多尺度双重注意力机制,得到显式轮廓引导目标检测特征图,并输入到目标框检测头中,得到目标检测结果。本发明能够提升复杂背景下多类目标的检测性能和定位精度。

    基于ViT-Pix2Pix的光学图像翻译方法

    公开(公告)号:CN115272787A

    公开(公告)日:2022-11-01

    申请号:CN202210779801.7

    申请日:2022-07-04

    Abstract: 本发明提供一种基于ViT‑Pix2Pix的光学图像翻译方法,包括:获取待测SAR图像;构建初始目标翻译网络模型,并通过成对的SAR图像和光学图像对初始目标翻译网络模型进行参数优化,获取目标翻译网络模型,目标翻译网络模型为Vision Transformer与Pix2Pix相结合的模型,包括有生成器和判别器,其中,生成器用于将SAR图像翻译为伪光学图像,判别器用于判断输入光学图像是否为SAR图像匹配的真光学图像,生成器和判别器以对抗的形式完成神经网络训练优化;将待测SAR图像输入目标翻译网络模型,获取目标光学图像。本发明能够提高判别器的性能,并确保网络模型训练的稳定性,提高了生成图像的质量。

Patent Agency Ranking