基于Adaboost算法的人脸识别优化方法

    公开(公告)号:CN104820825A

    公开(公告)日:2015-08-05

    申请号:CN201510203079.2

    申请日:2015-04-27

    Inventor: 杨新武 袁顺 马壮

    Abstract: 基于Adaboost算法的人脸识别优化方法,首先对人脸图像进行特征提取和降维,用降维后的矩阵数据,使用SAMME.R算法进行识别分类;在训练弱分类器时,判断该弱分类器的结果,在所有同属一类的样本的分类中,正确分类的样本的权值和,是否比分到其他任意一类的权值和大;如果满足该条件则继续进行权值调整和下一次迭代;如果不满足,由于训练出的弱分类器不够好,达不到要求,所以在权值不变的情况下重新训练弱分类器,然后再次判断新的弱分类器是否满足上边所述的条件,如果满足进入下一次调整,不满足继续重新训练弱分类器,不断优化弱分类器的质量,从而逼近最优强分类器;得到最终的强分类器有效提高了人脸识别的准确率。

    基于Adaboost算法的人脸识别优化方法

    公开(公告)号:CN104820825B

    公开(公告)日:2017-12-22

    申请号:CN201510203079.2

    申请日:2015-04-27

    Inventor: 杨新武 袁顺 马壮

    Abstract: 基于Adaboost算法的人脸识别优化方法,首先对人脸图像进行特征提取和降维,用降维后的矩阵数据,使用SAMME.R算法进行识别分类;在训练弱分类器时,判断该弱分类器的结果,在所有同属一类的样本的分类中,正确分类的样本的权值和,是否比分到其他任意一类的权值和大;如果满足该条件则继续进行权值调整和下一次迭代;如果不满足,由于训练出的弱分类器不够好,达不到要求,所以在权值不变的情况下重新训练弱分类器,然后再次判断新的弱分类器是否满足上边所述的条件,如果满足进入下一次调整,不满足继续重新训练弱分类器,不断优化弱分类器的质量,从而逼近最优强分类器;得到最终的强分类器有效提高了人脸识别的准确率。

Patent Agency Ranking