-
公开(公告)号:CN116403007B
公开(公告)日:2023-12-19
申请号:CN202310390010.X
申请日:2023-04-12
Applicant: 北京卫星信息工程研究所
IPC: G06V10/74 , G06V10/62 , G06V10/82 , G06V20/10 , G06V10/766 , G06V10/764 , G06V10/80
Abstract: 本发明涉及一种基于目标向量的遥感影像变化检测方法,包括:使用向量对遥感序列影像进行样本标注;构建目标向量检测模型,将已标注的遥感序列影像输入所述目标向量检测模型进行训练;利用所述目标向量检测模型对同一区域不同时间的遥感影像中的所有目标进行检测,得到不同集合的目标向量;利用变化相似度算法计算不同集合中目标向量的相似度距离,获得目标的变化情况。通过实施本发明的上述方案,可以实现遥感影像中目标变化前后的高精度匹配和精细化的变化检测。
-
公开(公告)号:CN116385600B
公开(公告)日:2023-12-19
申请号:CN202310376114.5
申请日:2023-04-10
Applicant: 北京卫星信息工程研究所
IPC: G06T11/60 , G06F40/289 , G06F40/216 , G06F16/9532 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种遥感图像目标特性的分布式表征方法、装置及电子设备,所述方法包括:利用非结构化文本的先验信息对目标特性进行表达;结合结构化遥感图像知识对非结构化文本表达进行筛选;训练遥感图像语义环境模型,分布式表征遥感图像中的目标特性。通过实施本发明的上述方案,可以实现结合非结构化文本知识与结构化图像知识的目标特征表达。
-
公开(公告)号:CN116385881B
公开(公告)日:2023-11-14
申请号:CN202310378004.2
申请日:2023-04-10
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/25 , G06V10/40 , G06V10/80 , G06V10/82 , G06V10/774 , G06V10/764
Abstract: 本发明涉及遥感图像地物变化检测方法及装置,包括获取同一区域不同时相的两幅图像;利用两个共享权重的U‑Net作为主干网络,对输入的两个时相的遥感图像,经过主干网络的两个分支进行特征提取;对两个分支提取的特征进行局部交换;通过多头自注意力机制,对交换后得到的特征进行全尺度的特征提取;再对两个分支的遥感图像恢复空间尺度,然后对特征进行融合,得到新的融合分支;利用U‑Net网络的两个分支和融合分支进行地物变化检测,得到遥感图像地物变化检测结果。本发明能够有效提高遥感图像地物变化的检测精度。
-
公开(公告)号:CN116645448A
公开(公告)日:2023-08-25
申请号:CN202310457856.0
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所
IPC: G06T11/40 , G06V10/74 , G06V20/13 , G06V10/82 , G06V10/764 , G06T5/00 , G06N3/0464 , G06N3/048 , G06N3/0475 , G06N3/0455 , G06N3/094 , G06N3/096
Abstract: 本发明涉及一种光学遥感影像的定量云自动添加方法及装置,所述方法包括:对真实无云光学遥感影像和真实有云光学遥感影像进行预处理;构建基于循环生成对抗网络的深度神经迁移网络;利用预处理后的真实无云光学遥感影像和真实有云光学遥感影像对所述基于循环生成对抗网络的深度神经迁移网络进行训练学习,实现云量的定量添加。通过实施本发明的上述方案,可以实现自动生成包含不同比例云的高质量典型目标的光学遥感影像训练样本。
-
公开(公告)号:CN115294439B
公开(公告)日:2023-04-07
申请号:CN202210923739.4
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种空中弱小运动目标检测方法、系统、设备及存储介质,首先读取至少三个不同波段间存在成像视差的卫星遥感图像,获取的多光谱数据源中每个波段对目标成像时存在一定的时间偏差,时间偏差会造成运动目标在多光谱图像中的位移视差,并利用该位移视差确定空中弱小运动目标,最后对检测到的空中弱小运动目标图像进行坐标和投影转换,输出检测结果。本发明实现了宽幅成像模式下不同空间分辨率多光谱图像中空中弱小运动目标的检测,避免了传统方法中空间分辨率对检测精度的影响及实际应用中的局限性,弥补了现有技术手段和方法的不足,提高了空中弱小运动目标检测识别精度。
-
公开(公告)号:CN116486085B
公开(公告)日:2023-12-19
申请号:CN202310474551.0
申请日:2023-04-27
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种遥感图像的场景描述方法,包括:S100,根据遥感图像构建遥感知识词库;S200,根据Mask2Former网络对所述遥感图像进行全景分割,得到全景分割结果并生成语义分割结果;S300,引入语义扩充模块,根据所述全景分割结果和所述语义分割结果对所述遥感图像进行语义扩充;S400,以ResNet特征提取网络为基础,引入基于通道的注意力模块,提取所述遥感图像中不同通道的语义特征信息;S500,以LSTM场景描述网络为基础,引入知识融合模块,生成关于所述遥感图像的场景描述语句。本发明能更加准确地描述高分遥感图像所携带的丰富语义及空间信息,可应用于遥感图像智能解译、遥感图像大数据管理等领域,具有广阔的前景。
-
公开(公告)号:CN116486238B
公开(公告)日:2023-09-15
申请号:CN202310466470.6
申请日:2023-04-26
Applicant: 北京卫星信息工程研究所
IPC: G06V10/86 , G06V10/774 , G06V10/26 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/042 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种联合点集表示与图分类的目标细粒度识别方法,包括:构建并训练基于Oriented RepPoints的目标点集表示模型,检测生成代表目标的点集;将所述点集中的点作为节点,根据空间关系构建图结构;截取每个点周围的矩形区域,并将该矩形区域对应的卷积特征作为图节点的特征;构建图卷积神经网络模型,对所述图节点的特征进行聚合与更新,并整合所有图节点的特征进行图分类。通过实施本发明的上述方案,通过综合利用目标的部件特征以及部件之间的关系,提高目标细粒度识别的精度。
-
公开(公告)号:CN116486238A
公开(公告)日:2023-07-25
申请号:CN202310466470.6
申请日:2023-04-26
Applicant: 北京卫星信息工程研究所
IPC: G06V10/86 , G06V10/774 , G06V10/26 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/042 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种联合点集表示与图分类的目标细粒度识别方法,包括:构建并训练基于Oriented RepPoints的目标点集表示模型,检测生成代表目标的点集;将所述点集中的点作为节点,根据空间关系构建图结构;截取每个点周围的矩形区域,并将该矩形区域对应的卷积特征作为图节点的特征;构建图卷积神经网络模型,对所述图节点的特征进行聚合与更新,并整合所有图节点的特征进行图分类。通过实施本发明的上述方案,通过综合利用目标的部件特征以及部件之间的关系,提高目标细粒度识别的精度。
-
公开(公告)号:CN116486169A
公开(公告)日:2023-07-25
申请号:CN202310477115.9
申请日:2023-04-27
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V10/26 , G06V10/762 , G06F16/36 , G06V10/82 , G06N3/0464 , G06N3/08 , G06V20/50
Abstract: 本发明涉及遥感图像目标动向判别方法,包括:S100,对遥感图像进行全景分割标注和目标行为动向标注,确定目标动向知识图谱;S200,基于遥感图像建立全景分割模型,以ResNet作为特征提取主干网络,并引入交叉注意力模块提取长距上下文信息;S300,根据全景分割网络中的实例分割分支对遥感图像进行实例级分割,根据全景分割网络中的语义分割分支对遥感图像进行语义级分割;S400,引入基于贝叶斯决策的分支融合模块,对实例分割分支和语义分割分支的结果进行决策融合,生成全景分割图像;S500,将全景分割图像进行像素聚类生成场景信息知识图谱;S600,根据图注意力网络,对场景信息知识图谱中的关注目标进行动向判别。本发明可推理遥感图像中目标的行为动向信息。
-
公开(公告)号:CN116385881A
公开(公告)日:2023-07-04
申请号:CN202310378004.2
申请日:2023-04-10
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/25 , G06V10/40 , G06V10/80 , G06V10/82 , G06V10/774 , G06V10/764
Abstract: 本发明涉及遥感图像地物变化检测方法及装置,包括获取同一区域不同时相的两幅图像;利用两个共享权重的U‑Net作为主干网络,对输入的两个时相的遥感图像,经过主干网络的两个分支进行特征提取;对两个分支提取的特征进行局部交换;通过多头自注意力机制,对交换后得到的特征进行全尺度的特征提取;再对两个分支的遥感图像恢复空间尺度,然后对特征进行融合,得到新的融合分支;利用U‑Net网络的两个分支和融合分支进行地物变化检测,得到遥感图像地物变化检测结果。本发明能够有效提高遥感图像地物变化的检测精度。
-
-
-
-
-
-
-
-
-