-
公开(公告)号:CN109767427A
公开(公告)日:2019-05-17
申请号:CN201811592744.1
申请日:2018-12-25
Applicant: 北京交通大学
Inventor: 魏秀琨 , 杨子明 , 贾利民 , 张文强 , 李永光 , 李宇杰 , 高方庆 , 尹贤贤 , 魏德华 , 管青鸾 , 赵利瑞 , 江思阳 , 李赛 , 孟鸿飞 , 滕延芹 , 王熙楠 , 所达 , 翟小婕 , 潘潼 , 陈亚兰
Abstract: 本发明提供了一种列车轨道扣件缺陷的检测方法。该方法包括:构建Faster R-CNN网络模型,该Faster R-CNN网络模型包括区域生成网络RPN和快速区域卷积神经网络Fast R-CNN,网络初始化方式采用预训练好的同类任务的参数初始化,再利用训练集数据对所述Faster R-CNN网络模型进行训练。通过拍照设备拍摄采集地铁线路上的扣件图像;将扣件图像输入到训练好的Faster R-CNN网络模型,Faster R-CNN网络模型利用卷积操作和池化操作提取扣件图像中的扣件区域,利用损失函数对所述扣件区域进行缺陷类别检测。本发明通过区域生成网络和快速区域卷积神经网络的结合,对训练图片的自主学习与特征提取,从而能对采集到的大尺寸图像进行扣件定位和缺陷自动检测,智能化程度更高,实现效率更高,模型适用性更强。
-
公开(公告)号:CN109658387A
公开(公告)日:2019-04-19
申请号:CN201811425533.9
申请日:2018-11-27
Applicant: 北京交通大学
Inventor: 魏秀琨 , 江思阳 , 贾利民 , 尹贤贤 , 赵利瑞 , 魏德华 , 杨子明 , 李赛 , 孟鸿飞 , 滕延芹 , 王熙楠 , 管青鸾 , 所达 , 翟小婕 , 潘潼 , 陈亚兰
IPC: G06T7/00
Abstract: 本发明提供一种电力列车的受电弓碳滑板缺陷的检测方法。该方法包括:构建改进的RCNN网络模型,利用训练集数据对改进的RCNN网络模型进行训练。通过安装在列车轨道旁的工业线阵相机采集电力列车的受电弓图片,将受电弓图片输入到训练好的改进的RCNN网络模型,改进的RCNN网络模型利用卷积运算提取所述受电弓图片中的受电弓碳滑板区域,利用损失函数对受电弓碳滑板区域进行缺陷类别检测。本发明的方法通过区域生成网络和快速区域卷积神经网络的结合,对训练图片的自主学习与特征提取,从而能对采集系统拍摄的图片中受电弓碳滑板的有效区域及缺陷类别进行分析,能够对受电弓碳滑板的状态进行实时监测,保障城市轨道列车安全运行,具有较大的应用前景。
-
公开(公告)号:CN109534140A
公开(公告)日:2019-03-29
申请号:CN201811611011.8
申请日:2018-12-27
Applicant: 北京交通大学
Inventor: 魏秀琨 , 赵利瑞 , 贾利民 , 孟鸿飞 , 李赛 , 魏德华 , 尹贤贤 , 杨子明 , 江思阳 , 滕延芹 , 管青鸾 , 所达 , 潘潼 , 翟小婕 , 王熙楠 , 陈亚兰
Abstract: 本发明提供了一种基于SIMPACK的电扶梯梯级链建模与故障仿真方法。该方法利用动力学仿真软件SIMPACK建立电扶梯梯级链仿真模型,并在模型从动轴上设置振动加速度传感器,分别加入链节距伸长、销轴和套筒磨损、滚子和齿轮磨损三种故障形式。在SIMPACK中分别进行正常状态、链节距伸长状态、销轴和套筒磨损状态、滚子和齿轮磨损状态下的离线积分,将离线积分结果在动力学仿真软件SIMPACK后处理器中打开,并输出所需的从动轴横向振动加速度数据,对四种状态下的从动轴横向振动加速度数据进行分析,研究不同状态下的故障规律。这种仿真方法能够快速准确地仿真电扶梯梯级链的各故障情况下的运行状态,节省了大量的人力物力和财力,并对避免电扶梯故障的发生具有重大的意义。
-
公开(公告)号:CN112164044B
公开(公告)日:2025-02-14
申请号:CN202011010912.9
申请日:2020-09-23
Applicant: 广州地铁集团有限公司 , 北京交通大学
Inventor: 蔡昌俊 , 魏秀琨 , 王海 , 江思阳 , 何江海 , 贾利民 , 高劲 , 尹贤贤 , 刘兰 , 闫雅斌 , 魏德华 , 孟鸿飞 , 李赛 , 杨子明 , 滕延芹 , 潘潼 , 翟小婕 , 所达 , 管青鸾
Abstract: 本发明提供了一种基于双目视觉的刚性接触网的磨耗分析方法。该方法包括:通过两个相机采集列车顶部与隧道顶部的刚性接触网的接触线图像;对两个相机采集到的接触线图像对进行校正,利用立体匹配算法获取校正后的图像对的视差图;根据双目视觉立体成像原理将视差图转换为深度图,提取深度图中的接触线部分,对接触线部分进行三维重建可视化,得到刚性接触网的磨耗特征及分布。本发明利用接触网表面三维图以及各类别磨耗病害曲线图,能够较好地描述接触线表面磨耗情况,实现对刚性接触网的自动化、智能化检测。
-
公开(公告)号:CN108573213B
公开(公告)日:2021-11-02
申请号:CN201810201266.0
申请日:2018-03-12
Applicant: 北京交通大学
Abstract: 本发明提供一种轨道扣件缺损状态自动检测系统及方法,包括:第一定位模块;第二定位模块;分割模块;处理模块;检测模块;在本方面提供的系统及方法中,能够实现对扣件不同状态下的自动定位判定,解决了传统人工方法难以保证的漏检以及检测结果的客观准确性,同时为扣件异常状态自动化检测设备的设计提供了新方法和新思路。本发明可以准确有效地识别出轨道线路中存在的异常缺损扣件,显著提高了检测效率,为满足轨道交通线路安全高效地在线检测提供了良好的基础。本系统能实现在线检测,检测速度高,在充足光源下能适应不同时间段的检测需求,系统可靠性强,准确率高。
-
公开(公告)号:CN108596872B
公开(公告)日:2021-09-28
申请号:CN201810189940.8
申请日:2018-03-08
Applicant: 北京交通大学
Abstract: 本发明公开了一种基于Gabor小波和SVM的钢轨病害的检测方法,包括:读取钢轨表面图像;采用中值滤波滤除钢轨表面图像中的噪声,并进行背景补偿;对钢轨表面图像中的钢轨进行矫正、定位和分割;对钢轨进行动态引导滤波、边缘检测和标记,计算并定位钢轨的表面病害,并对表面病害进行分割;根据钢轨的表面病害的最小矩形框从不同角度计算并提取表面病害的特征向量;根据钢轨的表面病害的定位、分割和提取的特征向量,基于SVM对钢轨表面的病害进行识别检测。本发明能够在一定程度上实现钢轨表面剥离掉块病害的自动定位识别,并提高了传统人工检测所难以保证的客观准确性。
-
公开(公告)号:CN109785301A
公开(公告)日:2019-05-21
申请号:CN201811611691.3
申请日:2018-12-27
Applicant: 北京交通大学
Inventor: 魏秀琨 , 魏德华 , 贾利民 , 尹贤贤 , 赵利瑞 , 江思阳 , 杨子明 , 李赛 , 孟鸿飞 , 滕延芹 , 王熙楠 , 管青鸾 , 所达 , 翟小婕 , 潘潼 , 陈亚兰
Abstract: 本发明提供了一种基于图像处理的钢轨波磨自动识别方法和评估方法,用以解决现有技术中无法实时、自动、准确识别钢轨波磨的问题。所述识别方法首先读取轨道图像,对轨道图像进行预处理后获取钢轨表面图像,构建钢轨表面图像的特征描述后,进行钢轨波磨的自动识别,并进行周期评估和严重程度评估。本发明能够实现对钢轨表面的定位以及钢轨波浪形磨耗的自动识别,进行准确有效地识别,显著提高了检测效率;同时提供直观可靠的钢轨波磨评估结果,得到直观可靠的波磨周期估计和波磨严重程度评估可视化结果,为钢轨波磨自动化检测设备的设计和维保决策智能化的发展提供了新的思路和方案,为满足城市轨道交通线路高效可靠地在线监测奠定了坚实的基础。
-
公开(公告)号:CN109783929A
公开(公告)日:2019-05-21
申请号:CN201910023389.4
申请日:2019-01-10
Applicant: 北京交通大学
IPC: G06F17/50
Abstract: 本发明提供了一种地铁车辆受电弓碳滑板磨耗估算方法及寿命预测方法,用于解决现有技术中无法对碳滑板磨耗进行准确估算的问题。所述磨耗估算方法及寿命预测方法,结合碳滑板磨耗率曲线和接触线的布置方式,计算出碳滑板在一定的运行里程内不同位置的磨耗量,得到沿碳滑板横向分布的磨耗轮廓,将碳滑板磨耗外形分布计算出来并可视化,并进一步对碳滑板的使用寿命进行预测。本发明对碳滑板的磨耗程度做出预判,为维修部门提供有针对性的碳滑板打磨或更换建议,降低了时间、经济成本,同时得到碳滑板磨耗较严重的区域,通过致因分析来进行相应的技术调整,避免在碳滑板上形成凹槽,从而提升弓网运行的安全性,具有一定的经济效益和社会效益。
-
公开(公告)号:CN108596203A
公开(公告)日:2018-09-28
申请号:CN201810204111.2
申请日:2018-03-13
Applicant: 北京交通大学
Abstract: 本发明公开一种并联池化层对受电弓碳滑板表面磨耗检测模型的优化方法,包括以下步骤:1)采集受电弓滑板表面缺陷图像,并进行图像预处理,得到数据集;其中,所述数据集包含训练数据与测试数据,训练数据包含有标签数据与无标签数据两类;2)在CAFFE框架下搭建半监督卷积神经网络,并利用无标签数据对模型进行训练;3)基于随机池化原理,将原始的池化层换用为并联池化层,对有标签数据与无标签数据差异化采样,完成对基于半监督卷积神经网络受电弓碳滑板表面磨耗检测模型的优化。本发明采用并联池化层对不同属性数据差异化取样,增强了半监督卷积神经网络对无标签数据的利用效率,提升了受电弓碳滑板表面磨耗检测模型的优化效果。
-
公开(公告)号:CN108830822B
公开(公告)日:2022-05-06
申请号:CN201810198312.6
申请日:2018-03-12
Applicant: 北京交通大学
Inventor: 魏秀琨 , 李晨亮 , 贾利民 , 魏德华 , 李岩 , 刘玉鑫 , 尹贤贤 , 江思阳 , 杨子明 , 赵利瑞 , 李赛 , 孟鸿飞 , 滕延芹 , 王熙楠 , 李永光 , 崔霆锐
Abstract: 本发明公开了一种基于改进Canny算子的受电弓碳滑板磨耗识别方法,包括:采集车辆运行中受电弓碳滑板的弓头图像;对所述弓头图像进行图像归一化、图像平滑和形态学处理的图像预处理;对所述弓头图像进行边缘检测、直线检测、失真修正、图像裁剪和磨耗曲线拟合以识别所述受电弓碳滑板的边缘磨耗;以所述受电弓碳滑板的磨耗曲线的最高点为参照目标估计所述受电弓碳滑板磨耗曲线的实际磨耗深度,并判断磨耗深度是否超过预定阈值。本发明不仅能够满足实际运营车辆的检修需求,而且整个方法流程可以用于弓网自动监测系统,对受电弓碳滑板磨耗进行实时检测,提升检测的自动化水平,增强车辆运行的安全性,在未来具有很大的应用前景。
-
-
-
-
-
-
-
-
-