-
公开(公告)号:CN116882480A
公开(公告)日:2023-10-13
申请号:CN202311013570.X
申请日:2023-08-11
Applicant: 北京交通大学
IPC: G06N3/088 , G06N3/098 , G06F18/214 , G06F18/241 , G06N5/02 , G06F21/62
Abstract: 本发明提供了一种面向隐私保护的扩散模型驱动的无监督域泛化方法。该方法包括:目标服务器把训练完成的扩散模型和初始化完成的全局模型发送到各个客户端;各个客户端从扩散模型中采样出虚拟目标域数据,提取出域的特异特征和共享特征,各个客户端把域的共享特征和训练后的客户端模型上传到目标域中的目标服务器,目标服务器通过各客户端模型对目标域的样本进行联邦置信度投票,生成虚拟预测域;目标服务器根据各个客户端对虚拟预测域的贡献,动态调整各个客户端模型的权重,使用联邦置信度投票出的虚拟预测域,得到用于下一轮的联邦下发的全局模型。本发明使用扩散模型能够对目标域的数据进行较好的隐私保护,并有足够的通用性,降低了通讯压力。
-
公开(公告)号:CN115907029A
公开(公告)日:2023-04-04
申请号:CN202211391958.9
申请日:2022-11-08
Applicant: 北京交通大学
IPC: G06N20/00
Abstract: 本发明提供一种面向联邦学习投毒攻击的防御方法及系统,属于网络安全技术领域,在每轮联邦训练开始阶段将全局模型传输给各个参与方;其中,在第一轮联邦训练时初始化全局模型;利用接收到的参数更新后的全局模型,聚合新的全局模型;其中,参与方基于本地数据和初始化全局模型进行规定轮次的本地训练,进行全局模型参数的更新。本发明计算每一层模型更新的偏差和整体模型更新的偏差,将超过阈值的模型更新偏差的数量作为异常得分,筛选异常得分最小的参与方的模型更新进行聚合,实现了比仅考虑全部参数的距离更细粒度的筛选,筛选结果的数量基于更新参数的异常程度,保证了模型的收敛速度和准确率,同时能有效地应对目标性和非目标性的投毒攻击。
-