一种基于客户端分类和信息熵的联邦学习方法及装置

    公开(公告)号:CN114723071A

    公开(公告)日:2022-07-08

    申请号:CN202210450751.8

    申请日:2022-04-26

    Abstract: 本发明公开了一种基于客户端分类和信息熵的联邦学习方法及装置,涉及机器学习技术领域,该方法包括:基于客户端在非独立同分布数据场景的偏置程度,将客户端归入第一服务器或第二服务器;在相对应的服务器中训练客户端,得到训练好的客户端模型,并确定客户端模型的本地模型参数,并基于本地模型参数对应的更新第一服务器的第一模型参数和第二服务器的第二模型参数;确定第一服务器和第二服务器满足交互条件,基于第一模型参数和第二模型参数分别对应的权重,更新中央服务器的中央模型参数。本发明可以提升联邦学习的模型准确率,使得联邦学习适用于在不同混合程度的Non‑IID场景。

    用于认证加密与解密数据的方法及相关设备

    公开(公告)号:CN119854038A

    公开(公告)日:2025-04-18

    申请号:CN202510322616.9

    申请日:2025-03-19

    Abstract: 本申请提供一种用于认证加密与解密数据的方法及相关设备。该方法包括:获取原始数据包,所述原始数据包是利用XDP技术在链路层捕获的;对所述原始数据包的有效载荷进行加密,以得到第一数据包;生成消息摘要并对所述消息摘要进行签名,以生成消息认证码;将所述消息认证码和所述第一数据包进行封装,以得到第二数据包;对所述第二数据包的真实性进行验证;响应于所述第二数据包验证通过,将所述第二数据包写入解密线程队列进行解密,以得到所述原始数据包。通过上述方法实现了终端与业务系统之间数据传输的认证加密,使得终端与业务系统之间的数据传输更加安全。

    一种两阶段异常用户行为分析的检测方法及系统

    公开(公告)号:CN117909912B

    公开(公告)日:2024-07-02

    申请号:CN202410312729.6

    申请日:2024-03-19

    Abstract: 本发明涉及计算机与人工智能技术领域,特别涉及一种两阶段异常用户行为分析的检测方法及系统。其方法包括步骤:S1.数据特征处理:在获取用户行为信息及用户身份信息后将数据进行特征处理;S2.建立基准模型:分析用户行为的时间分布情况,选取部分特征数据建立基准模型,利用基准模型进行粗粒度的用户行为检测,找出存在异常用户;S3.细粒度检测:对基准模型找出的存在异常用户进行细粒度的第二阶段检测。本发明在第一阶段的基准模型实现行为级异常的检测,并能按时间顺序依次检测每周用户的行为情况,在第二阶段进行细粒度的用户级异常的检测,找出异常行为与用户的对应关系,更准确、更高比例地找出异常行为和用户并减少误报。

    一种两阶段异常用户行为分析的检测方法及系统

    公开(公告)号:CN117909912A

    公开(公告)日:2024-04-19

    申请号:CN202410312729.6

    申请日:2024-03-19

    Abstract: 本发明涉及计算机与人工智能技术领域,特别涉及一种两阶段异常用户行为分析的检测方法及系统。其方法包括步骤:S1.数据特征处理:在获取用户行为信息及用户身份信息后将数据进行特征处理;S2.建立基准模型:分析用户行为的时间分布情况,选取部分特征数据建立基准模型,利用基准模型进行粗粒度的用户行为检测,找出存在异常用户;S3.细粒度检测:对基准模型找出的存在异常用户进行细粒度的第二阶段检测。本发明在第一阶段的基准模型实现行为级异常的检测,并能按时间顺序依次检测每周用户的行为情况,在第二阶段进行细粒度的用户级异常的检测,找出异常行为与用户的对应关系,更准确、更高比例地找出异常行为和用户并减少误报。

Patent Agency Ranking