基于深度强化学习的多芯粒芯片算子放置策略生成方法

    公开(公告)号:CN115828831B

    公开(公告)日:2023-06-09

    申请号:CN202310110451.X

    申请日:2023-02-14

    Abstract: 本发明公开了一种基于深度强化学习的多芯粒芯片算子放置策略生成方法,包括:获取算子计算图和多芯粒芯片尺寸信息;根据多芯粒芯片尺寸信息生成可选的若干种目标放置芯粒网格尺寸;建立多芯粒芯片算子放置深度学习强化模型,其中多芯粒芯片算子放置深度学习强化模型包括算子运行环境模块和深度Q网络模块,算子运行模块用于根据当前环境网络和输入的动作,计算奖励值,并将环境变换到下一个状态,将奖励值和下一个状态传回深度Q网络模块,深度Q网络模块用于根据当前状态从可选的动作空间中选择价值最高的动作;基于算子运行环境模块对深度Q网络模块进行训练;利用训练好的深度强化学习模型对算子计算图在多芯粒芯片上的运行给出算子放置策略。

    一种面向多芯粒组合芯片的片上网络仿真系统

    公开(公告)号:CN115460128A

    公开(公告)日:2022-12-09

    申请号:CN202211399069.7

    申请日:2022-11-09

    Abstract: 本发明公开了一种面向多芯粒组合芯片的片上网络仿真系统,包括:片上网络生成单元,用于根据多芯粒组合芯片特征生成片上网络的抽象模型;数据路由仿真单元,用于对数据包在片上网络的运行进行仿真并输出数据在片上网络的仿真时间、路由所需的总周期数以及每个数据包的平均延迟。本申请通过在每个芯粒加上片间路由器并与芯粒内部的片内路由器相连,形成异构双层拓扑网络,使之可以仿真不同芯粒间的处理单元交互。对多芯粒芯片设计提供了性能评估,有利于芯片设计初期的探索;可灵活配置多芯粒芯片的各项参数,对不同规模的多芯粒芯片进行仿真。

    面向芯粒的神经网络推理开销估计方法及装置、电子设备

    公开(公告)号:CN115186821A

    公开(公告)日:2022-10-14

    申请号:CN202211108864.6

    申请日:2022-09-13

    Abstract: 本发明公开了面向芯粒的神经网络推理开销估计方法及装置、电子设备,其中面向芯粒的神经网络推理开销估计方法包括神经网络参数和芯粒拓扑结构获取、并行组内开销估计、并行组间网络传输开销估计及神经网络推理开销估计四个步骤。使得推理开销估计适用于神经网络在芯粒上并行调度的实际场景,神经网络推理开销估计能够适用于芯粒这样的拓扑结构,充分考虑芯粒上小芯片单元内外的带宽、小芯片单元内路由转发延迟和小芯片单元外路由转发延迟,使得神经网络在芯粒上的推理开销估计达到较高的精度,从而为神经网络在芯粒上加速推理所需的高性能调度策略奠定良好基础。

    一种面向多芯粒组合芯片的片上网络仿真系统

    公开(公告)号:CN115460128B

    公开(公告)日:2023-07-07

    申请号:CN202211399069.7

    申请日:2022-11-09

    Abstract: 本发明公开了一种面向多芯粒组合芯片的片上网络仿真系统,包括:片上网络生成单元,用于根据多芯粒组合芯片特征生成片上网络的抽象模型;数据路由仿真单元,用于对数据包在片上网络的运行进行仿真并输出数据在片上网络的仿真时间、路由所需的总周期数以及每个数据包的平均延迟。本申请通过在每个芯粒加上片间路由器并与芯粒内部的片内路由器相连,形成异构双层拓扑网络,使之可以仿真不同芯粒间的处理单元交互。对多芯粒芯片设计提供了性能评估,有利于芯片设计初期的探索;可灵活配置多芯粒芯片的各项参数,对不同规模的多芯粒芯片进行仿真。

    芯粒中神经网络推理的模块化调度方法、装置和计算设备

    公开(公告)号:CN115658274B

    公开(公告)日:2023-06-06

    申请号:CN202211425389.5

    申请日:2022-11-14

    Abstract: 本发明公开了一种芯粒中神经网络推理的模块化调度方法、装置和计算设备,包括:获取在芯粒中进行神经网络推理的调度策略搜索空间;获取并依据神经网络的计算图生成算子深度,依据计算图将算子划分为串行组;依据算子间的数据依赖关系、算子深度和串行组,划分计算图得到数据依赖模块和并行数据依赖模块;计算数据依赖模块的数据依赖复杂度,依据数据依赖复杂度、并行数据依赖模块以及芯粒资源总数计算算子的最大可用资源分配数量,作为调度策略迭代搜索的初始约束;依据调度策略搜索空间和初始约束迭代搜索使得计算开销、算子内和算子间数据传输开销、芯粒多级路由产生的拥塞开销之和最小的数据依赖模块调度策略。

    一种芯粒算法调度方法、系统、电子设备及存储介质

    公开(公告)号:CN115860081B

    公开(公告)日:2023-05-26

    申请号:CN202310179898.2

    申请日:2023-03-01

    Abstract: 本发明涉及一种芯粒算法调度方法,包括:获取待调度的神经网络算法计算图;获取芯粒的拓扑结构,并基于拓扑结构生成芯粒资源列表;对神经网络算法计算图进行图优化;对计算图划分并行组;对计算图进行活跃性分析;生成计算图中的每个算子的策略和对应的开销;生成整数线性规划的优化变量;设定整数线性规划的求解目标;设定整数线性规划的约束条件;求解整数线性规划问题;将求解整数线性规划问题得到的解作为计算图在芯粒上的调度方法。与现有技术相比,本发明基于整数线性规划技术,将算法调度空间搜索问题转换成整数线性规划求解问题,通过设置多种求解约束缩小策略探索空间,能够在很短的时间内得到神经网络算法在芯粒上最优的调度方案。

    基于深度强化学习的多芯粒芯片算子放置策略生成方法

    公开(公告)号:CN115828831A

    公开(公告)日:2023-03-21

    申请号:CN202310110451.X

    申请日:2023-02-14

    Abstract: 本发明公开了一种基于深度强化学习的多芯粒芯片算子放置策略生成方法,包括:获取算子计算图和多芯粒芯片尺寸信息;根据多芯粒芯片尺寸信息生成可选的若干种目标放置芯粒网格尺寸;建立多芯粒芯片算子放置深度学习强化模型,其中多芯粒芯片算子放置深度学习强化模型包括算子运行环境模块和深度Q网络模块,算子运行模块用于根据当前环境网络和输入的动作,计算奖励值,并将环境变换到下一个状态,将奖励值和下一个状态传回深度Q网络模块,深度Q网络模块用于根据当前状态从可选的动作空间中选择价值最高的动作;基于算子运行环境模块对深度Q网络模块进行训练;利用训练好的深度强化学习模型对算子计算图在多芯粒芯片上的运行给出算子放置策略。

    面向芯粒的神经网络推理开销估计方法及装置、电子设备

    公开(公告)号:CN115186821B

    公开(公告)日:2023-01-06

    申请号:CN202211108864.6

    申请日:2022-09-13

    Abstract: 本发明公开了面向芯粒的神经网络推理开销估计方法及装置、电子设备,其中面向芯粒的神经网络推理开销估计方法包括神经网络参数和芯粒拓扑结构获取、并行组内开销估计、并行组间网络传输开销估计及神经网络推理开销估计四个步骤。使得推理开销估计适用于神经网络在芯粒上并行调度的实际场景,神经网络推理开销估计能够适用于芯粒这样的拓扑结构,充分考虑芯粒上小芯片单元内外的带宽、小芯片单元内路由转发延迟和小芯片单元外路由转发延迟,使得神经网络在芯粒上的推理开销估计达到较高的精度,从而为神经网络在芯粒上加速推理所需的高性能调度策略奠定良好基础。

Patent Agency Ranking