-
公开(公告)号:CN117649568A
公开(公告)日:2024-03-05
申请号:CN202410128337.4
申请日:2024-01-30
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/762 , G06V10/74 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/082
Abstract: 在本说明书提供的一种用于图像分类卷积神经网络的网络压缩方法及装置中,通过获取训练完成的图像分类卷积神经网络以及输入图像,将输入图像输入该图像分类卷积神经网络中,确定各节点的参数以及各节点输出的该输入图像的激活特征,针对每一网络层,根据该网络层的各节点的参数和激活特征,确定核心参数和核心激活特征,并得到参数聚类结果和激活特征聚类结果,进而确定综合聚类结果,根据该综合聚类结果对该网络层进行剪枝。通过结合参数聚类结果和激活特征聚类结果,确定综合聚类结果,综合考虑了图像分类卷积神经网络的参数相似性和激活模式,考虑更全面,有效地减少了图像分类卷积神经网络的复杂性。
-
公开(公告)号:CN116992032B
公开(公告)日:2024-01-09
申请号:CN202311235665.6
申请日:2023-09-25
Applicant: 之江实验室
IPC: G06F16/35 , G06N3/0464 , G06N3/08
Abstract: 本申请涉及一种基于模型自动量化的文本分类方法、系统和存储介质,其中,上述方法包括:基于文本特征数据,得到初始神经网络;获取初始神经网络在目标卷积层的输入值和输出值;根据输入值,获取第一激活值;根据转移因子、第一激活值和第一权重值得到平滑系数;根据平滑系数,得到目标卷积层输出和初始神经网络在目标卷积层的输出值的均方误差集合,进而得到目标平滑系数;根据目标平滑系数对应得到目标神经网络模型,用于对待分类文本数据进行分类。通过本申请,解决了相关技术中存在的通过传统模型量化方法生成的文本分类神经网络模型的学习效果较差,导致文本分类的准确度较低问题,提高了文本分类的准确度。
-
公开(公告)号:CN117009534A
公开(公告)日:2023-11-07
申请号:CN202311281379.3
申请日:2023-10-07
Applicant: 之江实验室
IPC: G06F16/35 , G06F40/289 , G06F40/216
Abstract: 本申请涉及一种文本分类方法、装置、计算机设备以及存储介质。所述方法包括:对文本分类数据集进行分词处理,确定目标语义单元序列;根据目标语义单元序列构建样本数据集;将有标签数据集分别输入学生模型和标签训练教师模型,确定第一学生预测数据和第一教师预测数据,并将无标签数据集分别输入学生模型和对抗训练教师模型,确定第二学生预测数据和第二教师预测数据;根据第一学生预测数据、第一教师预测数据、第二学生预测数据和第二教师预测数据对所述学生模型进行参数调整,确定文本分类模型;将待分类文本输入所述文本分类模型,根据文本分类模型的输出结果确定待分类文本的文本分类标签。上述方法提高了文本分类的准确性。
-
公开(公告)号:CN116755893A
公开(公告)日:2023-09-15
申请号:CN202311056655.6
申请日:2023-08-22
Applicant: 之江实验室
IPC: G06F9/50 , G06F16/2457 , G06F16/2455 , G06N3/08
Abstract: 面向深度学习的分布式计算系统的作业调度方法和装置,包括:获取用户输入的作业信息,并存储在数据库中,作业信息包括作业优先级等,并根据作业信息维护一个作业优先级队列;获取集群中各节点的缓存信息;响应于接收到发起作业执行的请求,作业执行根据所述的优先级队列先后顺序执行,将所述作业调度到相应主机节点上执行,执行的结果存储到数据库中;响应于接收到模型更新作业的请求,在所述数据库中查询所述作业所需的数据,计算作业剩余结束时间,并将计算结果保存到数据库中;响应与接收到更新所述队列请求,在所述数据库中查询所需的数据,并根据所述数据更新所述队列。本发明较少依赖用户输入信息,有效提高作业执行时间预测精度。
-
-
-