-
公开(公告)号:CN115858798B
公开(公告)日:2024-11-19
申请号:CN202210651618.9
申请日:2022-06-09
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/36 , G06F40/295 , G06F40/30
Abstract: 本发明涉及一种面向维基百科文本数据的事理图谱构建方法和系统,属于文本数据挖掘领域。该方法包括以下步骤:获取维基百科的数据并将其解析为纯文本的形式;使用语义角色标注技术抽取维基百科数据中的事件简介;使用命名实体识别技术对维基百科数据的事件中的人物、地点、机构进行抽取;使用正则表达式匹配技术对维基百科数据的事件中的时间进行抽取;将抽取的事件简介、人物、地点、机构和时间构造为事理图谱。本发明实现了从数据获取、事件抽取、事件论元抽取到图谱构建的相关技术流程,能够帮助研究和分析事件的基本信息和演化过程。
-
公开(公告)号:CN118821782A
公开(公告)日:2024-10-22
申请号:CN202410768553.5
申请日:2024-06-14
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种多粒度相似性增强的篇章级事件论元抽取方法及系统,属于文本信息抽取领域。本发明首先将文档输入预训练语言模型编码,得到高维度嵌入表示;然后构建包含句子和段落节点的异构图,通过图神经网络融合全局语义信息;最后,通过对比学习和排序损失增强段落和句子粒度的相似性。本发明解决了远距离事件论元抽取的难题,并有效缓解了噪音实体对抽取结果的干扰,提高了抽取的准确性和鲁棒性。
-
公开(公告)号:CN115269833B
公开(公告)日:2024-08-16
申请号:CN202210760202.0
申请日:2022-06-29
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/35 , G06F40/194 , G06F18/23213 , G06F18/24 , G06F18/25
Abstract: 本发明公开一种基于深度语义和多任务学习的事件信息抽取方法及系统,属于文本信息抽取领域。为克服现有事件信息抽取技术准确率、召回率低等不足,本发明主要利用预训练语言模型通过对文章在篇章级、语段级、语句级、词语级等粒度上分别进行向量表示,通过依次进行事件分类、事件论元抽取、关键词抽取获得事件的主要信息。本发明在事件分类、事件论元抽取、关键词抽取三方面达到了非常高的准确率。
-
公开(公告)号:CN118227796B
公开(公告)日:2024-07-19
申请号:CN202410641847.1
申请日:2024-05-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/33 , G06F40/289 , G06F40/30 , G06F18/24 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 长文本特定内容自动分类与阈值优化方法及其系统,涉及自然语言处理长文本领域。为了解决现有的长文本处理方法在自动分类时存在准确性差、效率低、动态调整、阈值自适应差的缺陷,本发明采用基于深度学习的长文本语义分析模型对待处理的长文本信息数据进行自动分类处理;对长文本进行动态分区域处理;对所述长文本信息数据的语义进行上下文感知融合,提高长文本内容自动分类的准确度;采用误差反馈机制动态调整分类阈值,从而实现长文本内容自动分类的阈值优化。本发明主要用于对互联网长文本的内容进行自动分类和阈值优化。
-
公开(公告)号:CN118227796A
公开(公告)日:2024-06-21
申请号:CN202410641847.1
申请日:2024-05-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/33 , G06F40/289 , G06F40/30 , G06F18/24 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 长文本特定内容自动分类与阈值优化方法及其系统,涉及自然语言处理长文本领域。为了解决现有的长文本处理方法在自动分类时存在准确性差、效率低、动态调整、阈值自适应差的缺陷,本发明采用基于深度学习的长文本语义分析模型对待处理的长文本信息数据进行自动分类处理;对长文本进行动态分区域处理;对所述长文本信息数据的语义进行上下文感知融合,提高长文本内容自动分类的准确度;采用误差反馈机制动态调整分类阈值,从而实现长文本内容自动分类的阈值优化。本发明主要用于对互联网长文本的内容进行自动分类和阈值优化。
-
公开(公告)号:CN116702094B
公开(公告)日:2023-12-22
申请号:CN202310957274.9
申请日:2023-08-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/26 , G06F18/25 , G06F18/213 , G06F18/22 , G06F18/27 , G06N3/045 , G06N3/044 , G06N3/0442 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及数据处理技术领域,提供一种群体应用偏好特征表示方法,其中方法包括:获取用户的交互数据;基于多模态预训练模型,提取所述交互数据的特征表示;基于所述交互数据的特征表示,确定所述交互数据的群体应用偏好特征;基于所述群体应用偏好特征,对所述用户进行画像。本发明提供的群体应用偏好特征表示方法,能够自适应的针对任意的纯文本数据、纯图像数据、图文混合数据提取联合特征,实现对多模态数据的分析处理,在图文模态下,可以增加特征提取的语义交互能力,使得到的群体应用偏好特征更准确,从而提高用户画像的质量。
-
公开(公告)号:CN115188039A
公开(公告)日:2022-10-14
申请号:CN202210586229.2
申请日:2022-05-27
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于图像频域信息的深度伪造视频技术溯源方法,对输入深度伪造视频进行抽帧;将抽出的图像利用RetinaFace人脸检测模型检测人脸图像,并进行人脸对齐和缩放;将裁出的人脸图像利用离散余弦傅里叶变换,裁剪算法和离散余弦傅里叶反变换获得其对应的高频频域特征;将原始人脸RGB信息和高频频域信息进行特征融合,得到融合特征;采用Xception作为主干网络进一步提取融合特征,得到对应的分类特征实现深度伪造视频技术溯源结果。本发明提高了对不同伪造技术的分类能力,提高了溯源准确率。
-
公开(公告)号:CN107992473B
公开(公告)日:2021-04-27
申请号:CN201711190871.4
申请日:2017-11-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/289 , G06F16/35
Abstract: 本发明涉及一种基于逐点互信息技术的诈骗信息特征词提取方法及系统,该提取方法包括:提取诈骗信息主题关键词,组成主题关键词集合;将信息组中的信息按是否为诈骗信息划分为正样本集合和负样本集合,并得到正样本分词集合、负样本候分词集合和候选关键词集合;根据候选关键词集合的候选关键词在信息组的正相互性PMI值和负相互性PMI值得到候选关键词在信息组的权重,将权重大于预设阈值的候选关键词记为信息组的合格关键词。本发明通过对信息组中的信息进行处理,得到候选关键词集合,计算候选关键词相对于信息的正相互性PMI值和负相互性PMI值,得到候选关键词的权重,由此判断是否为合格关键词,实现了对数据流式信息的关键词提取。
-
公开(公告)号:CN108959351A
公开(公告)日:2018-12-07
申请号:CN201810377825.3
申请日:2018-04-25
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
CPC classification number: G06F17/2785 , G06N3/0481
Abstract: 本发明属于自然语言处理技术领域,具体提供一种中文篇章关系的分类方法及装置。旨在解决传统管道系统方法中错误传递的问题。本发明的中文篇章关系的分类方法包括将中文篇章中的句子进行句对的分布式表示,得到第一句对分布式表示向量;计算记忆单元与第一句对分布式表示向量的相似度和权重,得到第一句对分布式表示向量的记忆信息;将第一句对分布式表示向量与记忆信息进行线性组合生成第二句对分布式表示向量;对第二句对分布式表示向量进行分类,得到中文篇章的关系分类结果。本发明的方法通过深度学习网络得到句子内部的语义和结构抽象特征,可以获得优越性能的篇章分类效果。
-
公开(公告)号:CN107992473A
公开(公告)日:2018-05-04
申请号:CN201711190871.4
申请日:2017-11-24
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于逐点互信息技术的诈骗信息特征词提取方法及系统,该提取方法包括:提取诈骗信息主题关键词,组成主题关键词集合;将信息组中的信息按是否为诈骗信息划分为正样本集合和负样本集合,并得到正样本分词集合、负样本候分词集合和候选关键词集合;根据候选关键词集合的候选关键词在信息组的正相互性PMI值和负相互性PMI值得到候选关键词在信息组的权重,将权重大于预设阈值的候选关键词记为信息组的合格关键词。本发明通过对信息组中的信息进行处理,得到候选关键词集合,计算候选关键词相对于信息的正相互性PMI值和负相互性PMI值,得到候选关键词的权重,由此判断是否为合格关键词,实现了对数据流式信息的关键词提取。
-
-
-
-
-
-
-
-
-