图像质量分数分布的预测方法、系统、终端及介质

    公开(公告)号:CN113628175A

    公开(公告)日:2021-11-09

    申请号:CN202110829971.7

    申请日:2021-07-22

    Abstract: 本发明公开一种图像质量分数分布的预测方法、系统、终端及介质,其中方法包括:提取图像的自然场景统计特征;利用提取的所述自然场景统计特征通过训练四个不同的支持向量机;采用训练得到的所述支持向量机来预测图像质量分数分布的四个参数,最终得到基于Alpha稳定模型的图像质量分数分布。本发明第一次提出使用Alpha稳定模型来描述图像质量得分的分布,其所表达出的信息要比图像的MOS更丰富,通过提取图像的自然场景统计特征,并利用支持向量机回归,可有效地预测图像的质量分数分布。

    基于深度学习的视障辅助的图像增强方法、设备和介质

    公开(公告)号:CN113628130A

    公开(公告)日:2021-11-09

    申请号:CN202110829947.3

    申请日:2021-07-22

    Abstract: 本发明提供一种基于深度学习的视障辅助的图像增强方法、设备和介质,包括:将卷积神经网络的输出端与模拟视障患者的视觉系统的输入端进行连接,得到级联系统;对卷积神经网络进行训练得到图像增强网络,其中:将原始图像输入卷积神经网络进行增强,将增强结果输入模拟视障患者的视觉系统进行模拟,级联系统输出为该视障症状的模拟的感知图像;计算级联系统输出和原始图像的损失,以最小化级联系统的输入输出图像间的差异为目标,对原始图像进行增强以补偿模拟的视障患者的视觉系统带来的失真。本发明得到的图像增强网络能有效地实现针对视障辅助的图像增强,实验表明针对中心视力下降的图像增强能有效改善患者的视觉功能和主观感知质量。

Patent Agency Ranking