-
公开(公告)号:CN112029111A
公开(公告)日:2020-12-04
申请号:CN202010987260.8
申请日:2020-09-18
Applicant: 三峡大学
Abstract: 本发明公开了一种用于抗生素识别的新型发光Eu基有机框架材料的制备方法。其化学通式为:[Eu(cppa)(OH)]n,cppa表示配体5-(4-羧基苯基)吡啶甲酸。晶态材料中每个Eu3+离子与四个不同的配体中的四个羧基氧原子和一个氮原子以及一个羟基氧原子相匹配,四个相邻的Eu原子成对连接。每个四核次级结构单元被生长中的羧酸基团桥接成1D杆状的Eu3+羧酸链,每个配体采用κ5-N,O1:O2’:O4:O5’-μ4桥接模式连接Eu3+离子,从而形成一个三维多孔框架。该配位聚合物通过调节激发波长对奥硝唑和呋喃妥因具有荧光识别作用,并且可微量检测,其结构新颖,合成简单,检测高效,适用于工业化生产。
-
公开(公告)号:CN111921529A
公开(公告)日:2020-11-13
申请号:CN202010833591.6
申请日:2020-08-18
Applicant: 三峡大学
IPC: B01J23/755 , B01J35/10 , H01G11/24 , H01G11/30
Abstract: 本发明属于一种金属有机框架(MOF)和过渡金属氢氧化物异质材料的制备方法及其应用,公开了一种由镍钴金属氢氧化物作为前驱体和模板剂,有机配体通过部分离子交换的方式获得由镍钴金属有机骨架/镍钴金属氢氧化物二维异质纳米片组成的三维纳米花复合材料及其在超级电容性能方面的应用。本发明采用两步合成技术,首先利用尿素与硝酸钴和硝酸镍在以蒸馏水为溶剂的体系自组装得到具有纳米花结构的NiCo(OH)2;然后再利用对苯二甲酸有机配体与NiCo(OH)2在N,N-二甲基甲酰胺,乙醇与水的混合溶液中通过部分离子交换的方式得到分布尺寸且大小均一的超薄NiCo-MOF/NiCo(OH)2纳米花结构。另外,本发明具有大量的活性位点,很好的反应活性和导电性,使得它具备良好的超级电容性能。
-
公开(公告)号:CN107722288B
公开(公告)日:2020-11-13
申请号:CN201710971399.1
申请日:2017-10-18
Applicant: 三峡大学
Abstract: 一例Eu‑MOFs材料的合成及其在抗生素识别中的应用,属于稀土功能材料领域。化学分子式为[(Eu)(L)(NO3)[HOCN(CH3)2]n,其中n仅代表该材料的内部分子组成为最简分子式的无限交替排列,L表示5‑(3‑(4‑四唑基)苯基)间苯二甲酸,该金属‑有机金属框架材料的合成方法采用的是溶剂热法,其合成产物在N,N‑二甲基甲酰胺(DMF)溶液中有很高的稳定性;且产率较高,能在含多种抗生素的(DMF)溶液中选择性识别出硝唑类抗生素甲硝唑(MDZ)、奥硝唑(ODZ)、罗硝唑(RDZ)。
-
公开(公告)号:CN107064221B
公开(公告)日:2020-04-07
申请号:CN201710225096.5
申请日:2017-04-07
Applicant: 三峡大学
IPC: G01N27/00
Abstract: 本发明提供一种对甲醛具有高响应灵敏度的金属氧化物气敏材料及其制备方法。以Co5(μ3‑OH)2(1,4‑ndc)4(bix)2化合物为前驱体,在高温下煅烧成纳米半导体金属四氧化三钴组成,利用萘二酸、1,4‑双(咪唑‑1‑基)丁烷、高氯酸钴溶解在无水乙醇和去离子水的混合溶液中,利用水热法合成,洗涤后的产物用无水乙醇浸泡后于80℃真空干燥箱干燥,自然冷却至室温,得到活化的前躯体Co‑MOFs材料,然后将Co‑MOFs放置于马弗炉中,马弗炉升温至不同温度,并保温,自然冷却至室温制得。该材料可在环境湿度为53%的条件进行工作,对甲醛具有高响应灵敏度和较快的响应时间。
-
公开(公告)号:CN110669500A
公开(公告)日:2020-01-10
申请号:CN201911002284.7
申请日:2019-10-21
Applicant: 三峡大学
Abstract: 本发明的铽基稀土晶态材料的化学分子式为[Tb(TZBT)(H2O)2]n;其中,n表示正无穷,TZBT表示1-(1,3,4-三唑基)-2,4,6-均苯三甲酸根,其价态为负三价。具有强荧光发射,可用于水中抗生素的检测,属于晶态材料及荧光检测材料领域。所述材料的制备方法为:封闭条件下,有机配体1-(1,3,4-三唑基)-2,4,6-均苯三甲酸与六水合硝酸铽在N,N-二甲基甲酰胺与水的混合溶液中,通过表面活性剂聚乙二醇400进行调节,经由溶剂热反应得铽基稀土晶态材料。本发明的优点是:该铽基稀土晶态材料合成工艺简单、结晶纯度高、产率高、重现性好;在水溶液中具有高稳定性;可在多种抗生素水溶液中高选择性检测出抗生素磺胺二甲基嘧啶(SMZ)。
-
公开(公告)号:CN107029789B
公开(公告)日:2019-11-08
申请号:CN201710225541.8
申请日:2017-04-07
Applicant: 三峡大学
Abstract: 本发明涉及一种具有电催化析氢性能的钴金属有机骨架材料及其制备方法,属于环境友好型电催化材料制备领域。本发明所用材料合成方法为水热法。具体步骤如下:首先将高氯酸钴、1,4‑萘二酸(H2ndc)、1,4‑双(咪唑基基)丁烷以及氢氧化钠均匀分散到无水乙醇及去离子水中,然后将上述混合浊液转移至聚四氟乙烯反应釜中进行水热反应。将所得产物洗涤、干燥后得到紫色块状晶体,将紫色晶体与一定质量的乙炔黑研磨即得到所述电催化材料[Co(ndc)(bidp)(H2O)]n。本发明制备过程简单,所得电催化剂具备较好的电解水析氢的能力,Tafel斜率可达到45mV/decade。在环保能源制取等领域具有良好应用前景。
-
公开(公告)号:CN110343257A
公开(公告)日:2019-10-18
申请号:CN201910641501.0
申请日:2019-07-16
Applicant: 三峡大学
Abstract: 本发明公开了一种多氯代钴基复合材料,制备方法及其应用。具体合成方法是利用四氯邻苯二甲酸有机配体、钴盐与4,4’-联吡啶在去离子水中自组装得到多氯代钴基配位聚合物,该材料的化学分子式为[Co(Cl4-bdc)(bpy)(H2O)2]n。利用乙炔黑(AB)作为导电物质通过研超研磨法对自组装得到多氯代钴基复合材料。纯Co-Cl-MOF晶体在电流密度为10 mA/cm2时析氢电位为424mV,Tafel斜率为125 mV·dec-1,与乙炔黑复合后的多氯代钴基复合材料AB&Co-Cl-MOF(3:4)在电流密度为10 mA/cm2时析氢电位为115mV,Tafel斜率为66mV·dec-1,该催化剂在电催化析氢反应(HER)中展现出优越的催化活性。
-
公开(公告)号:CN110152737A
公开(公告)日:2019-08-23
申请号:CN201910389547.8
申请日:2019-05-10
Applicant: 三峡大学
Abstract: 本发明公开了一种双金属硫化物基复合材料,应用一步水热法制备了一种双金属硫化物纳米微球与以Zr为金属中心的金属有机框架(MOF)的复合材料,ZnCdS纳米微球与有机框架材料形成异质结构的纳米复合催化材料的制备及其在光催化产氢中的应用,属于纳米材料制备技术及绿色能源领域。本发明首先利用氯化锆和对苯二甲酸为原料,经过溶剂热合成方块状Zr金属有机框架材料(简称UIO-66(Zr)),然后利用乙酸镉和乙酸锌进一步合成ZnCdS纳米微球改性金属有机框架UIO-66(Zr)的纳米复合材料。该纳米复合材料在光催化产氢中显示出优异的催化活性。
-
公开(公告)号:CN109650450A
公开(公告)日:2019-04-19
申请号:CN201910085058.3
申请日:2019-01-18
Applicant: 三峡大学
IPC: C01G39/06 , B01J20/02 , B01J20/30 , B01J27/051
Abstract: 本发明提供了一种表面多孔结构的大尺寸中空MoS2微球及其制备方法和应用。本发明先采用水热法制备大尺寸的Cu-Fe2O3微球,然后以该微球为模板通过水热法在其表面垂直生长MoS2层状纳米片,最后将得到的复合材料通过腐蚀液刻蚀的方法去除内部的模板,得到具有大尺寸的中空MoS2微球。实施例的结果表明,本发明能够制备得到表具有较大尺寸的中空微球,粒度分布1~30μm;中空微球表面是超薄纳米片组装的多孔结构,具有丰富的孔道结构,孔的尺寸为2~500nm的介孔及大孔,壳层厚度可以在5~500nm之间进行调节。本发明制备的MoS2材料尺寸较大,纳米片状二硫化钼垂直生排列形成了三维多孔的结构,在催化、光/电催化、吸附、气敏传感、润滑等领域都有较优异的性能。
-
公开(公告)号:CN109647487A
公开(公告)日:2019-04-19
申请号:CN201910085056.4
申请日:2019-01-18
Applicant: 三峡大学
Abstract: 本发明公开了一种p-n结结构氧化亚铜与石墨相氮化碳纳米复合材料的制备及其在光催化产氢中的应用,属于纳米材料制备技术及能源开发领域。本发明采用两步法合成技术,首先利用尿素为原料,经过高温缩聚处理合成多孔石墨相氮化碳,然后将硝酸铜溶于DMF溶液中,加入不同量的石墨相氮化碳,经过特定的程序控温,溶剂热法得到Cu2O@g-C3N4复合材料。该复合材料是由p型Cu2O中空纳米球和n型g-C3N4纳米片组成的新型Cu2O@g-C3N4 p-n结光催化剂。其中,空心Cu2O纳米球不仅可以作为一种优良的光敏剂,而且还可以在腔内实现太阳光的多次反射,从而在内置p-n结的协同作用下实现了较高的光催化分解。经实验发现,该纳米复合材料具有优异的光催化产氢活性。
-
-
-
-
-
-
-
-
-