一种推力矢量偏心诊断装置

    公开(公告)号:CN112326253A

    公开(公告)日:2021-02-05

    申请号:CN202011174239.2

    申请日:2020-10-28

    Abstract: 一种推力矢量偏心诊断装置,属于电推进技术领域。本发明解决了现有技术中缺少电推力器推力矢量偏心诊断装置的问题。安装基座与真空罐内平台之间固接,电推力器固装在安装基座的中部侧壁,轴向滑台沿电推力器轴向水平滑动设置在安装基座顶部,摆臂水平布置且一端通过旋转平台转动安装在轴向滑台上,悬臂竖直布置且水平滑动安装在摆臂的一端,法拉第探针阵列支架固装在悬臂上且其上法拉第探针阵列的中心与电推力器的中轴线位于同一水平线上。本申请填补了电推力器推力矢量偏心测量装置缺失的空白,利用法拉第探针阵列来诊断羽流空间分布,避免了直接测量推力以及径向分力对测量精度提出的巨大挑战。

    一种霍尔推力器压紧装配结构

    公开(公告)号:CN110778472B

    公开(公告)日:2020-10-16

    申请号:CN201911060016.0

    申请日:2019-11-01

    Abstract: 本发明提出一种霍尔推力器压紧装配结构,该压紧装配结构的阳极螺柱依次从陶瓷通道、底板和绝缘子安装孔中穿过,压紧螺母与阳极螺柱配合压紧在绝缘子下表面上,阳极与压紧螺母配合将陶瓷通道和绝缘子与底板压紧;压紧螺母的压紧段和装配螺纹段的端面均为同心圆环端面,装配螺纹段与阳极下方的螺柱螺纹配合,装配螺纹段的内径与阳极的螺柱外径相等,压紧段外径与绝缘子的底面外径相等。解决了现有霍尔推力器装配时绝缘子承受剪切力过大易碎,进而影响其整体结构可靠性以及工作可靠性的问题,提出一种霍尔推力器压紧装配结构,采用压紧螺母能够将阳极、陶瓷通道、底板以及绝缘子等固定压紧,能大幅度降低绝缘子所受剪切力作用,提高推力器可靠性。

    一种基于针-环-网结构的离子风推力装置

    公开(公告)号:CN111720282A

    公开(公告)日:2020-09-29

    申请号:CN202010597283.8

    申请日:2020-06-28

    Abstract: 本发明公开了一种基于针-环-网结构的离子风推力装置。该装置包括离子风推力器和电场均化装置;离子风推力器产生的电场将离子风推力器的放电空间内的介质气体电离产生电子,电子与放电空间内的中性气体分子结合形成带电粒子;电场均化装置设置在放电空间中,电场均化装置用于均化电场,使带电粒子均匀加速运动,形成离子风。本发明的基于针-环-网结构的离子风推力装置,通过电场均化装置均化电场的作用,改善了带电粒子的加速过程,提高了带电粒子加速的均匀性,优化了离子风推力器的宏观推力效果。

    一种基于电场加速的离子风推力装置

    公开(公告)号:CN111706480A

    公开(公告)日:2020-09-25

    申请号:CN202010558334.6

    申请日:2020-06-18

    Abstract: 本发明涉及一种基于电场加速的离子风推力装置,涉及临近空间电推进领域。该离子风推力装置包括离子风推力器和电场加速子装置;电场加速子装置设置于离子风推力器的放电空间中;离子风推力器产生的第一电场将中性气体分子电离成第一带电粒子,第一带电粒子在第一电场的作用下加速运动,并在运动过程中与中性气体分子碰撞产生第二带电粒子,第一带电粒子和第二带电粒子定向加速运动形成离子风;电场加速子装置产生的加速电场用于调控带电粒子的加速过程。第一带电粒子和第二带电粒子在运动过程中进入加速电场,并受到加速电场的作用,速度进一步发生变化,通过调控加速电场实现对带电粒子的加速与减速控制,改善离子风推力器加速过程。

    一种微阴极电弧推力阵列系统

    公开(公告)号:CN111516907A

    公开(公告)日:2020-08-11

    申请号:CN202010342613.9

    申请日:2020-04-27

    Abstract: 本发明公开了一种微阴极电弧推力阵列系统,涉及卫星微推进技术领域,包括一个由多组微阴极电弧推力器按照偶数正多边形放置方式排布集成的推力器集成部、一个功率输出单元和一个控制部;功率输出单元的输出端通过控制部与推力器集成部的阳极连接,推力器集成部的阴极与功率输出单元的输入端连接;其中,多组微阴极电弧推力器的阴极共用;通过控制部控制推力器集成部不同阳极与阴极间的通断,以达到多组微阴极电弧推力器轮流放电的目的;通过改变控制部的放电模式,以使微阴极电弧推力器在多种工作模式中选择,达到满足不同推进需求的目的。本发明具有质量和体积均减小、推重比和可靠性均上升、更好满足卫星推进需求等功能。

    一种基于微波增强的场致发射推力器

    公开(公告)号:CN111456921A

    公开(公告)日:2020-07-28

    申请号:CN201910059415.9

    申请日:2019-01-22

    Abstract: 本发明提供一种基于微波增强的场致发射推力器,包括:抽取极、发射极针管和底板,发射极针管穿透并固定在底板中心且位于底板上方,抽取极位于发射极针管上方,场致发射推力器还包括:套管、谐振腔外壳、微波馈入电缆和SMA微波输入接口,抽取极、谐振腔外壳和底板由上至下依次盖合形成圆柱形腔体,发射极针管位于谐振腔外壳轴心,套管套于发射极针管外,微波馈入电缆通过SMA微波输入接口进入谐振腔外壳内,并与套管的下端连接,谐振腔外壳内高为馈入微波的波长的四分之一,谐振腔外壳的内径小于馈入微波的波长的二分之一。本发明大大降低了胶体推力器的场致发射电压;同时,能够实现较高的比冲。

    一种微阴极电弧推进系统
    168.
    发明公开

    公开(公告)号:CN111348224A

    公开(公告)日:2020-06-30

    申请号:CN202010298568.1

    申请日:2020-04-16

    Abstract: 本发明公开了一种微阴极电弧推进系统,通过将传统微阴极电弧推进系统中的电感电路更换为电容电路,由于电容放电方式稳定,能够提高微阴极电弧推力器工作稳定性,并且由于电容在工作过程中内阻较小,从而降低电路额外功率消耗,提高了系统的效率。此外,由于采用脉冲电源,以脉冲方式供电,微阴极电弧推力器输入平均功率大幅降低。

    一种霍尔推力器安装支架

    公开(公告)号:CN109779863B

    公开(公告)日:2020-06-23

    申请号:CN201910098845.1

    申请日:2019-01-31

    Abstract: 一种霍尔推力器安装支架,属于霍尔推力器技术领域。本发明型解决了现有的霍尔推力器在空间受限的情况下供气管路和电路裸露在外面的问题。它包括支架主体和底板,所述支架主体包括水平设置的定位板及两个竖直设置在底板上方的支撑件,所述定位板的中部竖直开设有内径为上小下大的阶梯通孔,两个支撑件相对设置且其下部均固设在阶梯通孔的小孔内壁,每个支撑件均与阶梯通孔的小孔内壁随形设置,其中一个支撑件上开设有若干开口向上的豁口,另一个支撑件上水平开设有导线孔,每个支撑件的端部与另一个支撑件的端部之间均存在间隙,底板水平设置在阶梯通孔的大孔中且与定位板固接。

    一种大高径比霍尔推力器的磁屏结构

    公开(公告)号:CN111219304A

    公开(公告)日:2020-06-02

    申请号:CN201910204522.6

    申请日:2019-03-18

    Abstract: 一种大高径比霍尔推力器的磁屏结构,属于霍尔推力器技术领域。本发明解决现有采用大高径比设计霍尔推力器通道中径处的轴向磁场梯度低,推力器性能低的问题。本发明包括内磁屏、外磁屏和支撑件,内磁屏、外磁屏的圆心与支撑件的圆心重合,并且内磁屏、外磁屏和支撑件之间通过勾脚和扣槽的相互扣合固定构成内外嵌套的圆筒形结构。本发明在霍尔推力器采用大高径比设计的过程中,将内磁屏和外磁屏不用同一底面连接,不仅具有采用大高径比设计霍尔推力器的提高推力器推重比、减弱壁面侵蚀等优点,使得航天飞行器的有效载荷、使用寿命和机动灵活性有所提高,同时也提高了采用大高径比设计霍尔推力器通道中径处的轴向磁场梯度,提高了推力器的工作性能。

Patent Agency Ranking