基于多线索融合的暴恐音视频识别方法及装置

    公开(公告)号:CN108921002A

    公开(公告)日:2018-11-30

    申请号:CN201810367115.2

    申请日:2018-04-23

    Abstract: 本发明涉及计算机视频分类领域,提出了一种基于多线索融合的暴恐音视频识别方法,旨在解决音视频识别中,单一媒体模态分析音视频造成的大量误检和漏检问题。该方法包括:对用于进行暴恐识别的待检测音视频进行分割,提取音频帧序列和视频帧序列;按照预先指定的检测顺序检测所述音频帧序列和视频帧序列中是否包含暴恐信息;如果所述音频帧序列和/或视频序帧列包含暴恐信息,确定所述待检测音视频为暴恐音视频。本发明基于多个线索对音视频进行分级检测,能够快速、准确的从大量的音视频中识别出暴恐视频。

    基于对比的快速暴恐视频识别方法

    公开(公告)号:CN108734106A

    公开(公告)日:2018-11-02

    申请号:CN201810366397.4

    申请日:2018-04-23

    Abstract: 本发明涉及视频分类领域,提出了一种基于对比的快速暴恐视频识别方法,旨在解决在基于视觉特征的暴恐视频识别中由于特征描述子描述能力有限,所造成的暴恐视频识别的准确率(precious)和召回率(recall)相对较低问题。该方法包括:对用于进行暴恐识别的待检测视频进行镜头分割以选取待检测视频的关键帧;利用预先构建的暴恐视频识别模型,对该待检测视频的各关键帧进行哈希码运算,得到各上述关键帧的哈希码;将各上述关键帧的哈希码分别与预存暴恐视频的视频帧的哈希码比较,确定出与各上述关键帧相似的视频帧;如果与各上述关键帧相似的视频帧的数目超过设定阈值,确定该待检测视频为暴恐视频。本发明能够快速、准确的从大量的视频中识别出暴恐视频。

    基于深度学习的端到端的视频拷贝检测方法及装置

    公开(公告)号:CN108664902A

    公开(公告)日:2018-10-16

    申请号:CN201810367098.2

    申请日:2018-04-23

    Abstract: 本发明涉及视频分类领域,提出了一种基于深度学习的端到端的视频拷贝检测方法,旨在解决在视频拷贝检测中,两段视频中存在多处拷贝片段的检测困难,及无法准确定位拷贝视频片段的位置等问题。该方法的具体实施方式包括:对用于进行视频拷贝检测的两段待检测视频进行镜头分割以选取关键帧;利用预先构建的拷贝关系识别模型对所选取出的多个关键帧进行识别,确定各关键帧之间的拷贝关系;根据所得到的各关键帧之间的拷贝关系,构建两段上述待检测视频全部关键帧的贝关系矩阵;将该拷贝关系矩阵作为预先构建的定位识别模型的输入,定位两段所述待检测视中含有拷贝关系的片段。本发明能够快捷、高效地检测出两段视频中存在的多处拷贝关系的视频片段。

    盲图像超分辨率模型的训练方法、盲图像超分辨率方法、电子设备、存储介质和程序产品

    公开(公告)号:CN119722460A

    公开(公告)日:2025-03-28

    申请号:CN202510183438.6

    申请日:2025-02-19

    Abstract: 本公开提供了一种盲图像超分辨率模型的训练方法、盲图像超分辨率方法、电子设备、存储介质和程序产品,盲图像超分辨率模型包括用于确定盲图像的退化特征的退化特征估计器、用于根据退化特征修正盲图像的图像特征的图像特征修正模块、用于基于修正后的图像特征重建高清图像的图像重建模块,训练方法包括:采用基于退化先验约束的对比学习方法,对待训练的退化特征估计器进行第一阶段训练,得到第一退化特征估计器;对包含第一退化特征估计器的盲图像超分辨率模型进行第二阶段训练,得到教师模型;将教师模型作为学习对象,采用蒸馏学习方法进行第三阶段训练,得到最终的盲图像超分辨率模型。该方法可以得到一个低复杂度模型,适用于低算力设备。

    图像重建方法、模型训练方法、装置、设备、介质及产品

    公开(公告)号:CN118780985B

    公开(公告)日:2024-12-13

    申请号:CN202411259633.4

    申请日:2024-09-10

    Abstract: 本发明提供了一种图像重建方法、模型训练方法、装置、设备、介质及产品,可以应用于图像超分辨率重建领域。图像重建方法包括:对存在质量损失的退化图像进行特征提取,得到表征图像底层细节的底层图像特征和表征图像退化信息的隐式退化特征;利用隐式退化特征调节器分别对隐式退化特征进行通道级和空间级的扩展;将扩展后的隐式退化特征融入到底层图像特征中,分别得到融合了图像退化信息的通道图像特征和空间图像特征;将通道图像特征和空间图像特征进行特征融合并引入底层图像特征,以对退化图像的高频细节进行恢复;将进行细节恢复后得到的图像特征输入图像超分辨率模块中,输出重建的目标图像,其中,目标图像的分辨率高于退化图像。

    基于像素特征学习的无监督图像分割方法、装置及设备

    公开(公告)号:CN114627139B

    公开(公告)日:2024-10-25

    申请号:CN202210267325.0

    申请日:2022-03-18

    Abstract: 本发明公开了基于像素特征学习的无监督图像分割方法、装置及设备,其中,所述方法包括:获取预处理后的待分割图像,作为第一图像;提取所述第一图像中的超像素,得到所述第一图像的超像素集合;根据所述超像素集合,得到第一损失函数;预测所述第一图像的离散表示,最大化所述第一图像与所述离散表示之间的互信息,得到第二损失函数;根据所述第一损失函数和第二损失函数对所述第一图像进行分割,得到分割结果。通过上述方式,本发明可以有效发现图像中的潜在对象类别,输出的分割块能够精准匹配对象轮廓,同时能够完整地覆盖对象区域,进而大幅度降低下游高级视觉算法的训练难度和计算复杂性。

    一种分类模型训练方法、装置及设备

    公开(公告)号:CN115795355B

    公开(公告)日:2023-09-12

    申请号:CN202310095677.7

    申请日:2023-02-10

    Abstract: 本发明实施例涉及人工智能领域,公开了一种分类模型训练方法、装置及设备。本发明实施例涉及的分类模型训练方法,其特征在于,所述方法包括:获取待训练样本集进行特征提取,得到第一特征向量,计算得到原型特征向量;调用预设的损失调节器针对待训练的分类模型对应的损失函数进行参数调整,得到目标分类模型。这样,可以在模型训练过程中,基于当前学习结果及时施加相应的策略调整,提高了分类模型在小样本学习环境中训练的准确性,进而提高了训练后模型进行分类作业的正确率。

    一种伪造图像的识别方法、装置及设备

    公开(公告)号:CN114267089A

    公开(公告)日:2022-04-01

    申请号:CN202210203248.2

    申请日:2022-03-03

    Abstract: 本发明公开了一种伪造图像的识别方法、装置及设备,其中,所述方法包括:获取待检测图像;获取所述待检测图像的频谱掩模与所述待检测图像对应的身份空间约束,所述身份空间约束是指所述待检测图像与对应的预设参考正确图像的关联性权重分布图;根据所述频谱掩模对所述待检测图像进行分频,分别得到频谱的高频分量和低频分量;通过所述频谱的高频分量和低频分量与所述身份空间约束,分别得到高频分量的伪造概率和低频分量的伪造概率;合并所述高频分量的伪造概率和所述低频分量的伪造概率,得到最终伪造概率。通过上述方式,本发明提高了识别系统对于不同造假技术的泛化能力,增强了识别器的性能。

    目标对象的检测方法、装置、电子设备及存储介质

    公开(公告)号:CN113870254A

    公开(公告)日:2021-12-31

    申请号:CN202111440333.2

    申请日:2021-11-30

    Abstract: 本发明实施例公开了一种目标对象的检测方法、装置、电子设备及存储介质。该方法包括:根据待检测图像生成第一图像和第二图像,第一图像和第二图像的尺寸不同,第一图像和第二图像中的至少一个图像由待检测图像等比缩放得到,采用第一子模型检测第一图像,分别得到至少一类目标对像的第一子特征,以及采用第二子模型检测第二图像,分别得到至少一类目标对像的第二子特征,第一子模型与第二子模型是预训练的检测模型中相同的子模型,分别融合各类目标对像的第一子特征和第二子特征得到相应类的目标对像在待检测图像中的特征,实现了对待检测图像的整体轮廓和目标对象的同时检测,从而提高了目标对象检测方法检测的性能。

    基于多线索融合的暴恐音视频识别方法及装置

    公开(公告)号:CN108921002B

    公开(公告)日:2021-10-08

    申请号:CN201810367115.2

    申请日:2018-04-23

    Abstract: 本发明涉及计算机视频分类领域,提出了一种基于多线索融合的暴恐音视频识别方法,旨在解决音视频识别中,单一媒体模态分析音视频造成的大量误检和漏检问题。该方法包括:对用于进行暴恐识别的待检测音视频进行分割,提取音频帧序列和视频帧序列;按照预先指定的检测顺序检测所述音频帧序列和视频帧序列中是否包含暴恐信息;如果所述音频帧序列和/或视频序帧列包含暴恐信息,确定所述待检测音视频为暴恐音视频。本发明基于多个线索对音视频进行分级检测,能够快速、准确的从大量的音视频中识别出暴恐视频。

Patent Agency Ranking