-
公开(公告)号:CN104573672A
公开(公告)日:2015-04-29
申请号:CN201510044884.5
申请日:2015-01-29
Applicant: 厦门理工学院
CPC classification number: G06K9/00288 , G06K9/00268
Abstract: 本发明涉及人脸识别技术领域,具体涉及一种基于邻域保持的鉴别嵌入人脸识别方法,包括S1:去除训练样本集离散度矩阵ST的零空间,通过采用主成分分析算法PCA对训练样本集进行初始降维,获得一次降维训练样本集和一次降维训练样本矩阵,S2:在一次降维训练样本集中计算类内离散度矩阵SW的零空间N(SW),SW的零空间N(SW)中类内离散度矩阵的迹(或者行列式)为零,S3:然后在零空间N(SW)中通过最大化加权的类间离散度矩阵的迹(或行列式)P(SB)得到增强身份差分量的(子空间)对应投影矩阵,公式为:N(SW)∩P(SB)。本发明能够减轻人脸图像中的光照变化和表情等因素对鉴别信息提取的影响。
-
公开(公告)号:CN119888241B
公开(公告)日:2025-05-23
申请号:CN202510386253.5
申请日:2025-03-31
Applicant: 厦门理工学院
IPC: G06V10/26 , G06V10/774 , G06V10/80 , G06V10/44 , G06V40/14 , G06N3/042 , G06N3/0455 , G06N3/0464 , G06V10/52
Abstract: 本发明提供了多模态协同增强与动态对齐的血管图像分割方法及装置,涉及深度学习与图像处理技术领域。本发明通过获取不同模态的3D血管原图像集,并经切分与模态特征标记融合后,利用扩散模型进行去噪与增强生成模态嵌入图;将模态嵌入图输入改进的3D UNet编码器提取多尺度低级特征;基于图神经网络对低级特征进行全局特征增强与动态对齐,生成对齐高级特征;通过计算对齐高级特征的特征信息熵并进行动态权重融合,得到模态协同特征;基于正、负样本对的对比学习以优化模态协同特征之间的差异表示,得到融合特征;将融合特征输入解码器生成血管分割结果。本发明能高效捕捉不同模态细小血管的形态特征,显著提升多模态血管图像的分割精度与鲁棒性。
-
公开(公告)号:CN120010909A
公开(公告)日:2025-05-16
申请号:CN202510486738.1
申请日:2025-04-18
Applicant: 厦门理工学院
IPC: G06F8/75 , G06F8/53 , G06F9/455 , G06F18/22 , G06F18/213 , G06N3/045 , G06N3/042 , G06N3/0464 , G06N3/048
Abstract: 本发明提供的基于GNN的跨架构二进制程序相似性检测方法、装置及设备,涉及信息安全处理技术领域。本发明通过获取待检测的两份二进制程序,并反汇编为低级虚拟机中间表示LLVM IR;基于LLVM IR构建程序图;然后将所述程序图输入FastText模型提取出LLVM IR指令,并基于LLVM IR指令创建的语料库作为FastText模型的词汇表进行多轮训练,以将指令标记表示为连续向量空间中的词向量,生成指令向量;根据所述程序图和所述指令向量,利用全局注意力增强的图神经网络GNN进行处理,以生成固定维度的图嵌入向量;计算两份二进制程序对应的图嵌入向量之间的相似性以评估相似度。本发明能实现跨架构二进制程序的统一程序表示,捕获高层语义特征,有效提高大规模程序库分析的处理效率。
-
公开(公告)号:CN119863677A
公开(公告)日:2025-04-22
申请号:CN202510344777.8
申请日:2025-03-24
Applicant: 厦门理工学院
IPC: G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06F40/30 , G06F21/55 , G06N3/0455 , G06N5/04
Abstract: 本发明提供了针对验证码图像的无源对抗攻击方法、装置、设备及介质,涉及图像无源对抗攻击技术领域,该方法突破了传统对抗攻击依赖原始图像的局限,通过融合先进的语言模型与多模态技术,依据攻击者提供的文本提示生成高质量的对抗样本。在目标攻击场景中,借助优化的扩散模型技术,精准调控图像生成过程中的关键变量,从而生成高度逼真的对抗图像;而在复杂的黑盒攻击环境中,采用独特的双路径优化策略,整合多个模型的梯度信息,有效突破未知模型的防御壁垒,实现高效误分类。不仅显著增强了对抗攻击的隐蔽性与可转移性,还避免了传统方法对用户体验的负面影响,无需依赖原始图像即可生成自然、可用的对抗样本。
-
公开(公告)号:CN119625760A
公开(公告)日:2025-03-14
申请号:CN202411694627.1
申请日:2024-11-25
Applicant: 厦门理工学院
IPC: G06V30/226 , G06V30/186 , G06V30/262 , G06V30/19 , G06V10/766 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0499 , G06N3/0985 , G06N3/048
Abstract: 本发明提出一种基于部首表示学习的零样本汉字识别方法,包括以下步骤:建立零样本汉字识别数据集,获取汉字的表意描述序列;根据表意描述序列获取所有汉字的语义嵌入向量和所有部首及结构嵌入向量;汉字图像经过ResNet提取图像特征向量;图像特征向量经过特征增强编码模块得到增强特征;部首表示解码模块在部首及结构嵌入向量的引导下将增强特征转化为部首表示特征;汉字匹配模块利用部首表示特征和部首及结构嵌入向量预测语义嵌入向量,并与所有语义向量进行匹配以识别汉字。本发明通过减轻图像区域几何特征的纠缠问题,来提高图像特征向语义特征的可转移性,并利用部首嵌入学习和定位汉字图像中的关键部首表示,有效的提高未见汉字的识别能力。
-
公开(公告)号:CN118898846B
公开(公告)日:2025-03-11
申请号:CN202411396493.5
申请日:2024-10-09
Applicant: 厦门理工学院
IPC: G06V30/146 , G06V30/148 , G06V30/18 , G06V10/82 , G06N3/0455 , G06N3/0464
Abstract: 本发明提出一种应用于歪曲试卷的文档矫正系统,包括试卷图像的分割模块和基于多头注意力机制的试卷图像矫正模块;所述试卷图像的分割模块基于UNet构建的分割模型以实现对于试卷文档的左缘信息和右缘信息分割,通过卷积层、残差连接以及转置卷积层提取和融合图像特征,以获得图像分割图,随后进行后处理以获得实际的掩码图;再将分割后的信息输入到基于多头注意力机制的试卷图像矫正模块中以对分割后的图形进行矫正;所述基于多头注意力机制的试卷图像矫正模块采用Transformer结构,包括Encoder‑Decoder结构,采用多头注意力结构网络生成图像的光流图,通过一系列的Encoder编码器块进行逐步降采样和Decoder解码器块进行逐步上采样,得到矫正后的试卷文档图像。
-
公开(公告)号:CN119251852B
公开(公告)日:2025-02-25
申请号:CN202411774132.X
申请日:2024-12-05
Applicant: 厦门理工学院
Abstract: 一种基于多模态大模型的甲骨文字图像识别方法、装置、设备和介质,涉及计算机视觉技术领域。其中,这种甲骨文字图像识别方法首先,从OBIMD数据集提取甲骨文单字图像,并从镜原甲骨平台检索基础信息,形成单字数据集。接着,利用大语言模型生成包含文字释义等信息的第一对话数据集,并对Qwen2VL模型进行微调,得到初始识别模型。然后,通过位置信息对话数据集进行第二微调,获得定位顺序识别模型,该模型能识别字符并完成定位标注。进一步,生成现代汉语翻译对话数据集,并对模型进行第三微调,得到语义识别模型,能组合字符成句并翻译。最后,输入待识别甲骨文字图像,模型根据图像是单字或多字,分别输出字符标识、释义或组合句子并翻译成现代汉语。
-
公开(公告)号:CN119228940B
公开(公告)日:2025-02-25
申请号:CN202411774131.5
申请日:2024-12-05
Applicant: 厦门理工学院
IPC: G06T11/00 , G06V10/774 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/084
Abstract: 本发明提供了一种基于病理信息引导的扩散模型放大内镜图像生成方法,包括获取放大内镜的真实图像、Mask图像和病理信息文本提示,构建训练、测试数据集;构建基于病理信息引导的放大内镜图像生成模型通过训练数据集进行训练,得到训练好的放大内镜图像生成模型;利用测试数据集进行测试,评估其在未知数据上的性能,评估合格的即为最终得到的放大内镜图像生成模型;将最终得到的放大内镜图像生成模型应用于放大内镜图像生成工作,获取模型生成的放大内镜图像。该方法适用于关于放大内镜图片生成工作,利用病理信息和背景Mask图片引导的方式来精准生成不同病理的放大内镜图片,有效的解决了关于放大内镜图片下游分割和分类任务的数据不平衡问题。
-
公开(公告)号:CN119206279B
公开(公告)日:2025-02-25
申请号:CN202411729686.8
申请日:2024-11-29
Applicant: 厦门理工学院
IPC: G06V10/762 , G06V10/774 , G06V10/74 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0442 , G06N3/0464 , G06N3/084
Abstract: 本发明提供的一种基于不确定性与图神经网络的多视图聚类方法,涉及多视图聚类技术领域。本发明通过获取多视图数据集,进行预处理后,得到原始特征矩阵与邻接矩阵;对输入的所述原始特征矩阵和所述邻接矩阵进行特征提取与融合后,得到一致嵌入矩阵与转移矩阵;基于Dempster‑Shafer证据理论与狄利克雷分布,通过降低所述一致嵌入矩阵中嵌入空间的不确定性,得到可靠一致嵌入;将所述可靠一致嵌入与所述转移矩阵映射为最终嵌入;对所述最终嵌入进行解码重建与聚类分析,得到聚类结果。本发明能充分挖掘视图中的潜在信息,降低模型中的不确定性,解决了多视图聚类任务中存在的噪声问题,能够快速、高效、准确地得到多视图数据的聚类结果。
-
公开(公告)号:CN119380025A
公开(公告)日:2025-01-28
申请号:CN202411510319.9
申请日:2024-10-28
Applicant: 厦门理工学院
IPC: G06V10/26 , G06V10/82 , G06V10/774 , G06V10/764 , G06V10/80 , G06N3/0455 , G06N3/0464 , G06N3/082 , G06N3/084 , G06N3/088 , G06N3/0895 , G06N3/09 , G06N3/094
Abstract: 本发明提出基于半监督学习和细节增强的图像分割方法及系统,包括以下步骤:收集医学图像并将部分数据进行标注;构建医学图像分割模型;将标注的图像输入医学图像分割模型计算其交叉熵损失;对未标注图像施加弱扰动与强扰动;将弱扰动图像和强扰动图像输入医学图像分割模型,弱扰动图像经过编码器输出后对其添加特征扰动策略,利用无标注数据所得输出结果计算一致性损失;设置模型总损失包括交叉熵损失与一致性损失;对总损失进行优化以及反向梯度传播,更新模型网络参数;将目标图像输入医学图像分割模型,所述医学图像分割模型输出目标图像每个像素点所属类别。本发明可提高医学图像分割的效率,实现更高精度和鲁棒性。
-
-
-
-
-
-
-
-
-