-
公开(公告)号:CN116030272B
公开(公告)日:2023-07-14
申请号:CN202310323818.6
申请日:2023-03-30
IPC: G06V10/44 , G06V10/82 , G06V10/774
Abstract: 本发明属于人工智能算法技术领域,涉及一种基于信息抽取的目标检测方法、系统和装置,该方法包括:步骤一,对原始输入图片进行序列化处理,得到图片序列,即将图片按行或列转换成两组序列:行序列和列序列;步骤二,对行序列和列序列进行标签标注,得到对应序列的真实标签;步骤三,利用所述真实标签,输入所述的图片序列,训练一个基于循环神经网络的信息抽取模型,对行序列和列序列分别进行目标信息的抽取,得到行序列和列序列的预测标签;步骤四,根据行序列和列序列的预测标签,确定目标在图片中的位置。本发明利用序列信息抽取的方法来进行目标检测,能够提取原始图片的全局信息进行目标检测,同时不需要生成侯选框,提高算法的精度和效率。
-
公开(公告)号:CN115861858B
公开(公告)日:2023-07-14
申请号:CN202310122727.6
申请日:2023-02-16
Applicant: 之江实验室
IPC: G06V20/17 , G06V20/10 , G06V10/26 , G06V10/764 , G06V10/82 , G06V10/80 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及图像识别技术、农业育种领域,尤其涉及一种基于背景过滤的小样本学习农作物冠层覆盖度计算方法,该方法包括以下步骤:步骤S1:利用无人机载具获取待计算的田间高空俯拍RGB图像数据,构建支持数据集和查询数据集;步骤S2:构造并训练背景分割网络模型;步骤S3:基于训练得到的背景分割网络模型进行推理,结合绿色特征指数得到背景指数图;步骤S4:构造并训练小样本分割网络模型;步骤S5:基于训练得到的小样本分割网络模型进行推理,集合背景指数图得到农作物的冠层覆盖区域,并基于冠层覆盖区域计算冠层覆盖度。本发明具有准确度高,标注成本极低,且对农作物类冠层覆盖度计算具有通用性。
-
公开(公告)号:CN116072214B
公开(公告)日:2023-07-11
申请号:CN202310202392.9
申请日:2023-03-06
Applicant: 之江实验室
Abstract: 本发明公开了基于基因显著性增强的表型智能预测、训练方法及装置,通过基因形态与表型高低构建实际分布列联表,再根据卡方假设,构建基因形态与表型高低的期望分布列联表,对每个基因位点与表型进行卡方检验,基于卡方列联表得卡方假设成立的概率,得到基因位点对表型的显著性值,同时,对基因进行编码;然后根据每个基因位点的显著性值对基因的编码进行放大,从而增强基因数据与表型的关联度,大大提高了基于基因位点预测表型的精度。本发明针对染色体为双倍体的生物,采用深度学习训练的方法,通过增强基因位点的数据,从而提高基因位点到表型的预测精度。
-
公开(公告)号:CN116071239B
公开(公告)日:2023-07-11
申请号:CN202310202482.8
申请日:2023-03-06
Applicant: 之江实验室
IPC: G06T3/40 , G06T5/50 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开一种基于混合注意力模型的CT图像超分辨方法和装置,该方法包括:步骤一,获取已有的医学CT图像公开数据集和植物的原始高分辨率CT图像;步骤二,对所述植物的原始高分辨率CT图像进行多方式联合的实用退化操作,后构造高低分辨率图像数据对;步骤三,利用已有的医学CT图像公开数据集进行混合注意力模型的训练,训练完成后,继续使用高低分辨率图像数据对进行模型训练调整,得到最终调整好的混合注意力模型;步骤四,利用最终调整好的混合注意力模型,输入植物的低分辨率原始CT图像,输出目标高分辨率图像。本发明适用于农业中的CT图像,针对植物组织丰富的特点,实现植物组织的无损高精度检测和超分辨重建。
-
公开(公告)号:CN116072214A
公开(公告)日:2023-05-05
申请号:CN202310202392.9
申请日:2023-03-06
Applicant: 之江实验室
Abstract: 本发明公开了基于基因显著性增强的表型智能预测、训练方法及装置,通过基因形态与表型高低构建实际分布列联表,再根据卡方假设,构建基因形态与表型高低的期望分布列联表,对每个基因位点与表型进行卡方检验,基于卡方列联表得卡方假设成立的概率,得到基因位点对表型的显著性值,同时,对基因进行编码;然后根据每个基因位点的显著性值对基因的编码进行放大,从而增强基因数据与表型的关联度,大大提高了基于基因位点预测表型的精度。本发明针对染色体为双倍体的生物,采用深度学习训练的方法,通过增强基因位点的数据,从而提高基因位点到表型的预测精度。
-
公开(公告)号:CN115861858A
公开(公告)日:2023-03-28
申请号:CN202310122727.6
申请日:2023-02-16
Applicant: 之江实验室
IPC: G06V20/17 , G06V20/10 , G06V10/26 , G06V10/764 , G06V10/82 , G06V10/80 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及图像识别技术、农业育种领域,尤其涉及一种基于背景过滤的小样本学习农作物冠层覆盖度计算方法,该方法包括以下步骤:步骤S1:利用无人机载具获取待计算的田间高空俯拍RGB图像数据,构建支持数据集和查询数据集;步骤S2:构造并训练背景分割网络模型;步骤S3:基于训练得到的背景分割网络模型进行推理,结合绿色特征指数得到背景指数图;步骤S4:构造并训练小样本分割网络模型;步骤S5:基于训练得到的小样本分割网络模型进行推理,集合背景指数图得到农作物的冠层覆盖区域,并基于冠层覆盖区域计算冠层覆盖度。本发明具有准确度高,标注成本极低,且对农作物类冠层覆盖度计算具有通用性。
-
公开(公告)号:CN114663965B
公开(公告)日:2022-10-21
申请号:CN202210566142.9
申请日:2022-05-24
Abstract: 本发明公开一种基于双阶段交替学习的人证比对方法和装置,该方法包括:步骤一:收集人脸图像;步骤二:将收集的人脸图像进行裁剪、水平翻转、去噪、亮度增强和对比度增强处理后,得到人脸图像数据集,即训练集,并将训练集分批;步骤三:将经过处理后的训练集的图像依批次输入到卷积神经网络,使用余弦损失函数或者三元组损失函数的双阶段交替的人脸类别训练,得到训练好的人证比对模型;步骤四:将要进行人证比对的摄像头图像和证件图像输入训练好的人证比对模型,提取人脸特征,计算人脸相似度,输出人证比对结果。本发明有效提升了人证比对的准确率,实现余弦损失函数与三元组损失函数的结合,具有重大的应用价值。
-
公开(公告)号:CN115019296A
公开(公告)日:2022-09-06
申请号:CN202210930782.3
申请日:2022-08-04
IPC: G06V20/62 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明涉及计算机视觉领域,尤其涉及一种基于级联的车牌检测识别方法和装置,该方法包括:步骤一,通过摄像头获取视频图像,使用车牌检测模型,输出每张图像中检测到的车牌矩形边界框和包络框的位置;步骤二,基于步骤一车牌检测的结果,采用仿射变换以得到车牌的正面视角图;步骤三,将所述车牌的正面视角图输入到基于深度卷积神经网络的二分类器中,判断车牌是否为真正的车牌,是则保留,否则移除;步骤四:将步骤三去除假样例后的车牌,通过车牌识别技术实现车牌号码识别,获取检测图像中的所有车牌位置及号码。本发明实现方法简单,可移植性强,能够实现不限于移动摄像头拍摄的公路上、停车场、小区出入口等场所中车牌的精准识别。
-
公开(公告)号:CN115019215A
公开(公告)日:2022-09-06
申请号:CN202210947014.9
申请日:2022-08-09
Applicant: 之江实验室
IPC: G06V20/17 , G06V20/10 , G06V10/82 , G06V10/764 , G06V10/26 , G06V10/778
Abstract: 本发明公开一种基于高光谱图像的大豆病虫害识别方法和装置,该方法包括:步骤一,利用无人机搭载的高光谱相机与RGB相机采集高光谱数据集及其对应的RGB数据集;步骤二,对采集的高光谱数据集进行数据增广;步骤三,对RGB图像进行植株区域分割后与对应的高光谱图像进行像素点相乘得到含植株区域的图像,对该图像进行预处理计算出各类别平均光谱特性曲线;步骤四,输入高光谱数据集至大豆病虫害识别网络模型,采用课程学习方式以及各类别平均光谱特性曲线进行模型训练;步骤五,采用训练好的大豆病虫害识别网络模型,对采集输入的高光谱图像进行预测分类,输出最终预测的虫害类别。本发明能有效提高大豆病虫害识别的准确度。
-
公开(公告)号:CN114972976A
公开(公告)日:2022-08-30
申请号:CN202210902801.1
申请日:2022-07-29
Applicant: 之江实验室
Abstract: 本发明公开了基于频域自注意力机制的夜间目标检测、训练方法及装置,采用具有夜间图像检测标签的开源数据集训练检测网络,首先将输入图像进行预处理,使其从RGB转化为YUV通道,分别将三个通道的图像划分成多个区块;对于三个通道的各个区块,分别进行DCT离散余弦变换;将各个区块中属于同一频域的信息依据其原本的空间关系存入同一通道中,生成数个代表不同频域的通道;将所有频域通道输入自注意力网络模块,该模块通过计算各通道之间的可缩放点积自注意力,输出每个通道动态加权后的数值,再将其分别输入相同的多层感知器MLP;将输出结果输入检测网络中,最终获得图像的检测结果。
-
-
-
-
-
-
-
-
-