-
公开(公告)号:CN103344425B
公开(公告)日:2015-06-10
申请号:CN201310268146.X
申请日:2013-06-28
Applicant: 哈尔滨工业大学
IPC: G01M13/00
Abstract: 基准平面式超精密直驱式静压主轴动态性能在线测试方法,涉及静压主轴性能测试领域。本发明是为解决现有方法不能实现超精密静压主轴动态性能在线测试的问题。本发明方法如下:在直驱式超精密静压主轴转子的上端部安装高精度标准平面作为测量基准,采用高精度位移传感器测量主轴旋转时标准平面与高精度位移传感器之间的位移变化,通过传感器信号放大与数据采集系统将测得的位移变化量转换成数字信号后送入计算机进行数据分析与处理,从而实现超精密直驱式主轴动态性能的在线测量。本发明可以实现对处于实际加工状态下的超精密静压主轴的动态性能进行实时在线测量,不影响超精密机床的加工过程。
-
公开(公告)号:CN102902865B
公开(公告)日:2015-04-22
申请号:CN201210404048.X
申请日:2012-10-22
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 一种液体静压主轴的逆向制作方法,涉及液体静压主轴领域。它是为了解决现有的液体静压主轴制作困难,以及无法在制作前对主轴的动态性能进行预测的问题。它首先根据加工需求提出设计液体静压主轴的设计目标,然后根据机械结构设计准则确定出主轴的结构形式,再根据所确定的结构形式建立主轴的结构参数,计算相应参数变量所对应的主轴的第一阶固有频率w0,并将w0与设计目标ωn相比较,若差值非正,则将ω0所对应的参数输出,并由液体静压原理迭代出合适的液体静压轴承结构参数完成液体静压轴承的逆向制作;反之,则说明采用该种结构形式的主轴无法满足设计要求,需要改变主轴的结构形式,然后再次进行计算。本发明适用于液体静压主轴的动力学制作。
-
公开(公告)号:CN103217774B
公开(公告)日:2015-04-08
申请号:CN201310156386.0
申请日:2013-04-28
Applicant: 哈尔滨工业大学
IPC: G02B7/04
Abstract: 高通量大口径高精度楔形透镜调焦装置及五自由度调整方法,它涉及一种楔形透镜调焦技术。本发明的目的是为了解决激光装置惯性约束真空可控高通量大口径光学聚焦与频率转换系统中光学聚焦、高能激光光束匀滑等问题。楔形透镜部件安装在透镜调焦移动部件上,透镜调焦驱动机构安装在透镜调焦移动部件上,透镜调焦移动部件、楔形透镜部件和透镜调焦驱动机构等机构安装在鼠笼机构内,鼠笼前后侧设有前支撑组件和后支撑组件,透镜模块机构装在聚焦透镜模块壳体内。通过鼠笼机构实现其内部的透镜模块机构上下、左右移动,俯仰、偏摆四自由度调整;通过透镜调焦驱动机构实现透镜模块机构沿着光轴方向一维在线调整。本发明用于楔形透镜调焦。
-
公开(公告)号:CN104483743A
公开(公告)日:2015-04-01
申请号:CN201510003074.5
申请日:2015-01-05
Applicant: 哈尔滨工业大学
IPC: G02B7/183
CPC classification number: G02B7/183
Abstract: 一种用于极地环境的直驱式精密微位移促动器,它涉及一种精密微位移促动器,以解决目前没有适用于极地低温环境下的大型拼合镜面望远镜面板用的支撑和调节机构的问题,它包括运动支撑机构、驱动机构和消隙螺旋传动机构;运动支撑机构包括柔性轴、端盖、壳体和底盖,壳体为两端敞口的壳体,端盖和底盖分别盖装在壳体的两端;驱动机构包括弹性联轴器、电机连接板和步进电机,消隙螺旋传动机构包括导向键、驱动杆、传动螺母、弹簧套筒、螺杆、预紧弹簧、消隙螺母和防转螺钉。本发明用于多点支撑和调整拼合镜面天文望远镜的子镜面板。
-
公开(公告)号:CN103018879B
公开(公告)日:2015-02-11
申请号:CN201210554701.0
申请日:2012-12-19
Applicant: 哈尔滨工业大学
IPC: G02B7/198
Abstract: 一种基于正交轴系的高精度大口径电动反射镜架,它涉及一种电动反射镜架。本发明为了解决在对大口径激光束的传输方向进行引导的过程不够精准且难于控制,完成对激光光束的准直引导和光束近场调整的灵活性差的问题。机架通过转轴与俯仰轴框连接,俯仰轴框相对机架做俯仰角度调整,俯仰轴框转轴与偏摆轴框连接,偏摆轴框相对俯仰轴框做偏摆调整,横向定位挡条贴紧在过渡框体的内侧面上,轴向定位挡条贴紧在第二定位框内侧面上,俯仰轴微驱动器的微驱动输出端通过俯仰连接块与俯仰轴框连接,偏摆轴微驱动器的微驱动输出端通过偏摆连接块与偏摆轴框连接。本发明用于惯性约束激光核聚变装置的光束引导系统或其他需要大口径光路调整系统中。
-
公开(公告)号:CN103235394B
公开(公告)日:2015-02-04
申请号:CN201310156210.5
申请日:2013-04-28
Applicant: 哈尔滨工业大学
IPC: G02B7/04
Abstract: 一种鼠笼式高精度四维调整机构,它涉及一种高精度调整机构。本发明的目的是为了解决惯性约束激光核聚变装置中楔形透镜模块内各种光学元件姿态的高精度调整问题。通过调整透镜鼠笼姿态调整前/后支撑组件中四周的鼠笼滑块调整钉座板上的调整钉实现鼠笼内光学元件的上下、左右移动2自由度调节;通过调整透镜鼠笼姿态调整前支撑组件上螺钉实现鼠笼内光学元件的俯仰、偏摆2自由度调节;本发明实现了楔形透镜模块中光学元件姿态的4自由度高精度调整。实现了系统光学轴线与机械轴线的重合,保证大口径光学聚焦与频率转换系统通过机械接口集成到激光惯性约束核聚变装置上时,其光学精度能够满足装置的设计要求,避免繁杂的在线光学调整。
-
公开(公告)号:CN103808694A
公开(公告)日:2014-05-21
申请号:CN201410066535.9
申请日:2014-02-26
Applicant: 哈尔滨工业大学
IPC: G01N21/63
Abstract: 一种大口径晶体缺陷检测方法及装置,涉及一种晶体缺陷检测方法及装置。以解决目前尚无使晶体在恒温状态下利用倍频效率测量方法检测晶体存在生长缺陷的方法及装置。将装有晶体的大口径晶体缺陷检测装置置于检测装置缺陷检测光路中;装置:铜环外固定有加热器,两个内挡环套装在铜环内且与铜环可拆卸连接,两个内挡环之间固定有竖直设置的大口径晶体,内固定端盖与铜环固定连接,窗口玻璃片通过内固定端盖密封固定在内挡环斜端面上,加热器外侧套装外壳,外壳两端与外固定端盖固定,测温热电偶固定在铜环上,测温热电偶通过导线与测温热电偶的显示仪表相连,显示仪表输出温度给温控仪,温控仪通过导线与加热器相连。本发明用于大口径晶体缺陷检测。
-
公开(公告)号:CN103760652A
公开(公告)日:2014-04-30
申请号:CN201310691446.9
申请日:2013-12-17
Applicant: 哈尔滨工业大学
IPC: G02B7/00
Abstract: 一种用于大径厚比光栅安装的自动装置,涉及一种用于大径厚比光栅的自动安装装置。本发明在底座和顶板之间安装有外支柱,底箱的下表面固定连接于底座上表面的中心处,涡轮升降机固定连接于底箱的上表面中心处,涡轮升降机的涡轮轴与步进电机的电机轴连接,涡轮升降机的涡轮升降机丝杠与推板下表面固定连接,滑动支杆的一端与推板下表面固定连接,滑动支杆另一端的外表面与底箱上表面处固定连接的滑动轴承配合安装;顶板的上表面固定安装有辅助挡块和定位挡块,光栅连接框浮动安装在顶板上表面上,光栅连接框和顶板的内部为中空,光栅连接框上连接有光栅压块。本发明采用了步进电机和涡轮升降机作为驱动和传动机构,实现了光栅的自动安装。
-
公开(公告)号:CN103258575A
公开(公告)日:2013-08-21
申请号:CN201310155981.2
申请日:2013-04-28
Applicant: 哈尔滨工业大学
IPC: G21B1/23
Abstract: 真空可控高通量大口径光学聚焦与频率转换系统,属于光学聚焦与频率转换技术领域。它解决了现有光学聚焦与频率转换系统的一体式结构不利于在线更换的问题。它包括靶窗单元部、频率转换单元部、聚焦透镜单元部和光束测量取样部,靶窗单元部末端与频率转换单元部首端的壳体之间、频率转换单元部末端与聚焦透镜单元部首端的壳体之间及聚焦透镜单元部末端与光束测量取样部首端的壳体之间均通过法兰密封连接,靶窗单元部、频率转换单元部和聚焦透镜单元部形成气氛室;它将机械结构设计成可拆装组件,每个组成部以及内部的组件均可通过壳体上设置的相应舱口,采用快卸机构实现快速更换。本发明适用于大口径光学聚焦与频率转换。
-
公开(公告)号:CN103235394A
公开(公告)日:2013-08-07
申请号:CN201310156210.5
申请日:2013-04-28
Applicant: 哈尔滨工业大学
IPC: G02B7/04
Abstract: 一种鼠笼式高精度四维调整机构,它涉及一种高精度调整机构。本发明的目的是为了解决惯性约束激光核聚变装置中楔形透镜模块内各种光学元件姿态的高精度调整问题。通过调整透镜鼠笼姿态调整前/后支撑组件中四周的鼠笼滑块调整钉座板上的调整钉实现鼠笼内光学元件的上下、左右移动2自由度调节;通过调整透镜鼠笼姿态调整前支撑组件上螺钉实现鼠笼内光学元件的俯仰、偏摆2自由度调节;本发明实现了楔形透镜模块中光学元件姿态的4自由度高精度调整。实现了系统光学轴线与机械轴线的重合,保证大口径光学聚焦与频率转换系统通过机械接口集成到激光惯性约束核聚变装置上时,其光学精度能够满足装置的设计要求,避免繁杂的在线光学调整。
-
-
-
-
-
-
-
-
-