-
公开(公告)号:CN118378099A
公开(公告)日:2024-07-23
申请号:CN202410612144.6
申请日:2024-05-16
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种针对自然语言处理模型的数据召回方法及装置,针对待通过自然语言模型处理的第一信息,可以对其进行数据召回的预处理,以将召回的文本与第一信息一起经由自然语言处理模型进行处理,得到相应业务处理结果。在数据召回过程中,可以先从数据库中检索与第一信息相匹配的若干文本作为候选文本,然后利用预先训练的效用模型对各个候选文本进行有效性评估,以得到各个候选文本分别对应的各个效用分数,再针对各个候选文本,分别基于相应相似度和效用分数的融合得到相应的融合分数,并根据各个融合分数从候选文本中筛选出目标文本作为召回数据。如此,可以有效节约计算成本。
-
公开(公告)号:CN115034333B
公开(公告)日:2024-07-02
申请号:CN202210759145.4
申请日:2022-06-29
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/214 , G06N3/0464 , G06N3/098
Abstract: 本说明书实施例提供用于经由至少两个第一成员设备和第二成员设备训练业务模型的联邦学习方法,联邦学习装置和联邦学习系统。各个第一成员设备具有本地数据,第二成员设备维护待训练的业务模型。在进行联邦学习时,在各个第一成员设备从第二成员设备接收当前业务模型后,各个第一成员设备使用本地数据训练所接收的当前业务模型,确定本地训练出的业务模型与所接收的业务模型之间的模型相关性,并且仅仅在模型相关性满足预定条件时才将本地训练出的模型更新量提供给第二成员设备。第二成员设备根据从各个第一成员设备接收的模型更新量更新业务模型。
-
公开(公告)号:CN118227319A
公开(公告)日:2024-06-21
申请号:CN202410309629.8
申请日:2024-03-18
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供了基于负载均衡确定迁移方案的方法及装置。在该方法中,确定用于衡量机器与负载之间的负载均衡迁移成本的评估目标,其中,评估目标包括以下中的至少一种:负载迁移成本、资源消耗均衡度以及机器使用成本;根据评估目标构建在满足约束条件的情况下使得各个评估目标之和最小化的优化模型,其中,约束条件包括针对各个评估目标的目标约束条件,评估目标涉及各个负载与各个机器之间的占用状态;求解优化模型,以得到在负载均衡条件下机器和负载所呈现的终态;以及根据机器和负载当前所呈现的初始态以及终态,确定负载从初始态到终态的迁移路径。
-
公开(公告)号:CN118171056A
公开(公告)日:2024-06-11
申请号:CN202410175817.6
申请日:2024-02-07
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/20 , G06F18/214 , G06F18/213 , G06F18/241 , G06N3/042 , G06N3/045 , G06N3/0475 , G06N3/084 , G06N3/0895
Abstract: 本说明书实施例提供一种训练用户响应预测模型,以及进行用户行为预测的方法。用户响应预测模型包括K个环境生成器,第一图编码器,第二图编码器和预测网络,训练方法包括,采用K个环境生成器对用户关系图施加扰动,生成K个增强图。然后通过第一图编码器对第k增强图进行编码,得到各用户对应于第k增强图的第一表征。根据各用户施加预定干预的干预情况,调整第一表征,得到更新表征,形成第k更新图。通过第二图编码器对第k更新图进行编码,得到各用户的第二表征。根据目标用户的第一表征、第二表征以及干预情况,得到第k预测值。至少根据第k预测值和行为标签,确定损失,更新模型。
-
公开(公告)号:CN118153773A
公开(公告)日:2024-06-07
申请号:CN202410417578.0
申请日:2024-04-08
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种时间序列预测方法及装置,在进行时序预测过程中,考虑细时间粒度中的时序数据长度较大的情形,为了充分利用细时间粒度下的时序数据,通过按时间周期分割将长序列转换成短序列,并对短序列进行切片、提取单个短序列的切片编码、提取各个短时序中的对应时间区间的切片表征,进而通过拼接、形状重塑、融合等处理,进行分时间周期的长时序预测。这种实施方式可以减少参数量,提高对长时序数据处理的有效性。
-
公开(公告)号:CN118114675A
公开(公告)日:2024-05-31
申请号:CN202410533245.4
申请日:2024-04-29
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F40/295 , G06F16/35 , G06N3/0455 , G06N5/04 , G06F16/36 , G06N5/022
Abstract: 本申请一个或多个实施例提供一种基于大语言模型的医疗命名实体识别方法和装置,该方法包括:由大语言模型在多个不同的第一类提示文本中的各个第一类提示文本的引导下,基于候选实体类别集合对原始文本进行命名实体识别,得到命名实体识别结果;基于命名实体识别结果,确定原始文本中的各个目标命名实体及其对应的至少一个候选实体类别,并将其转化为与目标命名实体对应的至少一个用于指示与命名实体对应的实体类别的观点;获取与目标命名实体的定义相关的知识文本;由大语言模型从知识文本中抽取与各个观点对应的论据,并进一步基于论据,评估各个观点的正确度;将正确度最高的目标观点指示的候选实体类别确定为与目标命名实体对应的实体类别。
-
公开(公告)号:CN117932164A
公开(公告)日:2024-04-26
申请号:CN202410139688.5
申请日:2024-01-31
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/9536 , G06F16/2457 , G06N3/0455 , G06N3/08
Abstract: 本说明书实施例提供的推荐方法、推荐模型的模型训练方法及设备,对历史行为序列中交互项的项标识与辅助信息进行融合;基于项标识信息、融合信息以及位置信息,通过位置解耦的融合自注意力模型确定各个交互项的融合项标识表征;基于各个交互项的融合项标识表征与候选项之间的匹配得分向用户推荐候选项。根据本说明书实施例的技术方案,能够消除位置信息与项标识、辅助信息之间的噪声干扰,并保留了项标识与辅助信息之间的强相关性,从而能够提高个性化推荐的准确性。
-
公开(公告)号:CN117875449A
公开(公告)日:2024-04-12
申请号:CN202410048420.0
申请日:2024-01-11
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N20/00 , G06F40/20 , G06F40/126 , G06F16/35
Abstract: 本说明书的实施例提供了一种基于持续预训练的语言模型训练方法和装置。在该基于持续预训练的语言模型训练方法中,利用当前软提示生成模型得到与当前领域的各个当前训练样本对应的软提示特征;进而利用当前语言模型根据各个文本数据和对应的软提示特征得到各个文本数据对应于当前领域的隐特征;再基于所得到的各个文本数据对应于当前领域的隐特征与相应基于所述初始当前语言模型而得到的对应于上一领域的隐特征之间的差异,确定跨域损失值;在不满足当前领域的训练结束条件时根据跨域损失值调整当模型参数;在满足当前领域的训练结束条件时继续利用下一领域的训练样本集重复执行上述模型训练过程,直至满足持续预训练的训练结束条件。
-
公开(公告)号:CN113485833B
公开(公告)日:2024-02-06
申请号:CN202110780138.8
申请日:2021-07-09
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本公开披露了一种资源预测方法和装置。所述方法包括:接收集群的待处理任务;从预设的多种资源预测方式中选择与所述待处理任务对应的资源预测方式;根据所述待处理任务对应的资源预测方式,对所述待处理任务所需的目标资源进行预测;其中,所述多种资源预测方式包括第一资源预测方式和第二资源预测方式,所述第一资源预测方式基于预先训练的机器学习模型对所述目标资源进行预测,所述第二资源预测方式基于所述集群在滑动窗口期内的任务的资源使用数据对所述目标资源进行预测。
-
公开(公告)号:CN117370652A
公开(公告)日:2024-01-09
申请号:CN202311303448.6
申请日:2023-10-08
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/9535 , G06F18/214
Abstract: 本说明书的实施例提供了一种模型训练、信息推荐方法和装置。在该模型训练方法中,通过在训练过程中引入样本分组模型和权重计算模型,根据当前训练样本经过待优化模型的输出和对应的标签确定各个当前训练样本的状态。再分别利用样本分组模型和权重计算模型确定各个当前训练样本所属的分布类别和对应的权重。进而,基于当前训练样本经过待优化模型的输出和对应的标签以及对应的权重确定损失值,以调整待优化模型的模型参数;基于各个当前训练样本所属的分布类别和对应的权重确定相应的奖励值,以调整样本分组模型和权重计算模型的模型参数。
-
-
-
-
-
-
-
-
-