联邦学习方法、联邦学习装置及联邦学习系统

    公开(公告)号:CN115034333B

    公开(公告)日:2024-07-02

    申请号:CN202210759145.4

    申请日:2022-06-29

    Inventor: 李龙飞 周俊

    Abstract: 本说明书实施例提供用于经由至少两个第一成员设备和第二成员设备训练业务模型的联邦学习方法,联邦学习装置和联邦学习系统。各个第一成员设备具有本地数据,第二成员设备维护待训练的业务模型。在进行联邦学习时,在各个第一成员设备从第二成员设备接收当前业务模型后,各个第一成员设备使用本地数据训练所接收的当前业务模型,确定本地训练出的业务模型与所接收的业务模型之间的模型相关性,并且仅仅在模型相关性满足预定条件时才将本地训练出的模型更新量提供给第二成员设备。第二成员设备根据从各个第一成员设备接收的模型更新量更新业务模型。

    基于负载均衡确定迁移方案的方法及装置

    公开(公告)号:CN118227319A

    公开(公告)日:2024-06-21

    申请号:CN202410309629.8

    申请日:2024-03-18

    Abstract: 本说明书实施例提供了基于负载均衡确定迁移方案的方法及装置。在该方法中,确定用于衡量机器与负载之间的负载均衡迁移成本的评估目标,其中,评估目标包括以下中的至少一种:负载迁移成本、资源消耗均衡度以及机器使用成本;根据评估目标构建在满足约束条件的情况下使得各个评估目标之和最小化的优化模型,其中,约束条件包括针对各个评估目标的目标约束条件,评估目标涉及各个负载与各个机器之间的占用状态;求解优化模型,以得到在负载均衡条件下机器和负载所呈现的终态;以及根据机器和负载当前所呈现的初始态以及终态,确定负载从初始态到终态的迁移路径。

    基于大语言模型的医疗命名实体识别方法和装置

    公开(公告)号:CN118114675A

    公开(公告)日:2024-05-31

    申请号:CN202410533245.4

    申请日:2024-04-29

    Abstract: 本申请一个或多个实施例提供一种基于大语言模型的医疗命名实体识别方法和装置,该方法包括:由大语言模型在多个不同的第一类提示文本中的各个第一类提示文本的引导下,基于候选实体类别集合对原始文本进行命名实体识别,得到命名实体识别结果;基于命名实体识别结果,确定原始文本中的各个目标命名实体及其对应的至少一个候选实体类别,并将其转化为与目标命名实体对应的至少一个用于指示与命名实体对应的实体类别的观点;获取与目标命名实体的定义相关的知识文本;由大语言模型从知识文本中抽取与各个观点对应的论据,并进一步基于论据,评估各个观点的正确度;将正确度最高的目标观点指示的候选实体类别确定为与目标命名实体对应的实体类别。

    基于持续预训练的语言模型训练方法和装置

    公开(公告)号:CN117875449A

    公开(公告)日:2024-04-12

    申请号:CN202410048420.0

    申请日:2024-01-11

    Abstract: 本说明书的实施例提供了一种基于持续预训练的语言模型训练方法和装置。在该基于持续预训练的语言模型训练方法中,利用当前软提示生成模型得到与当前领域的各个当前训练样本对应的软提示特征;进而利用当前语言模型根据各个文本数据和对应的软提示特征得到各个文本数据对应于当前领域的隐特征;再基于所得到的各个文本数据对应于当前领域的隐特征与相应基于所述初始当前语言模型而得到的对应于上一领域的隐特征之间的差异,确定跨域损失值;在不满足当前领域的训练结束条件时根据跨域损失值调整当模型参数;在满足当前领域的训练结束条件时继续利用下一领域的训练样本集重复执行上述模型训练过程,直至满足持续预训练的训练结束条件。

    资源预测方法和装置
    99.
    发明授权

    公开(公告)号:CN113485833B

    公开(公告)日:2024-02-06

    申请号:CN202110780138.8

    申请日:2021-07-09

    Inventor: 李龙飞 周俊

    Abstract: 本公开披露了一种资源预测方法和装置。所述方法包括:接收集群的待处理任务;从预设的多种资源预测方式中选择与所述待处理任务对应的资源预测方式;根据所述待处理任务对应的资源预测方式,对所述待处理任务所需的目标资源进行预测;其中,所述多种资源预测方式包括第一资源预测方式和第二资源预测方式,所述第一资源预测方式基于预先训练的机器学习模型对所述目标资源进行预测,所述第二资源预测方式基于所述集群在滑动窗口期内的任务的资源使用数据对所述目标资源进行预测。

    模型训练、信息推荐方法和装置
    100.
    发明公开

    公开(公告)号:CN117370652A

    公开(公告)日:2024-01-09

    申请号:CN202311303448.6

    申请日:2023-10-08

    Abstract: 本说明书的实施例提供了一种模型训练、信息推荐方法和装置。在该模型训练方法中,通过在训练过程中引入样本分组模型和权重计算模型,根据当前训练样本经过待优化模型的输出和对应的标签确定各个当前训练样本的状态。再分别利用样本分组模型和权重计算模型确定各个当前训练样本所属的分布类别和对应的权重。进而,基于当前训练样本经过待优化模型的输出和对应的标签以及对应的权重确定损失值,以调整待优化模型的模型参数;基于各个当前训练样本所属的分布类别和对应的权重确定相应的奖励值,以调整样本分组模型和权重计算模型的模型参数。

Patent Agency Ranking