-
公开(公告)号:CN112201773A
公开(公告)日:2021-01-08
申请号:CN202011074551.4
申请日:2020-10-09
Applicant: 哈尔滨工业大学
IPC: H01M4/1391 , H01M4/38 , H01M4/62 , H01M10/0525
Abstract: 一种铜包覆铬氧化物正极的制备方法及其应用,属于锂离子电池技术领域。本发明的目的是为了进一步提升铬氧化物正极材料的放(电)比容量、动力学过程及倍率性能,所述方法为:将三氧化铬通过高温煅烧、球磨、水洗处理,制备铬氧化物正极;在铬氧化物正极表面包覆铜。采用铜包覆铬氧化物正极、单锂离子选择性隔膜、含锂负极和醚类或酯类电解液组装电池。本发明利用铜在锂离子电池正极一侧特殊的电化学行为,基于Cu‑Cu2+电化学反应具有较高的放电电压平台和比容量,可实现对电池正极材料动力学过程、放电容量及电压平台的显著提升。
-
公开(公告)号:CN110581267A
公开(公告)日:2019-12-17
申请号:CN201910871104.2
申请日:2019-09-16
Applicant: 哈尔滨工业大学
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M10/0525
Abstract: 一种纳米纤维素-硅-石墨微米片柔性电极材料及其制备方法和应用,它涉及材料制备技术领域。本发明的目的是为了解决目前无法将石墨微米片通过简单的方法制备成高柔性电极的问题。该方法使硅纳米颗粒均匀的分散在纳米纤维素纤维上,然后在表面自组装石墨微米片,通过冷冻铸形、冷冻干燥后得到纳米纤维素-硅-石墨微米片气凝胶电极,经过液压、辊压成膜后得到纳米纤维素-硅-石墨微米片柔性电极材料。本发明采用功能化的纳米纤维素作为柔性基底分散硅纳米颗粒,组装石墨微米片制备柔性复合电极材料,能够保证电极材料的柔性、强度和优异的电化学性能,在具备一定柔性的基础上,弯曲折叠若干次之后,电极材料内部结构及其比容量均能得到良好保持。
-
公开(公告)号:CN110247112A
公开(公告)日:2019-09-17
申请号:CN201910555674.0
申请日:2019-06-25
Applicant: 哈尔滨工业大学
IPC: H01M10/0565 , H01M10/0525
Abstract: 本发明公开了一种“三明治”结构的高润湿性硫化物基复合电解质及其制备方法与应用,所述复合电解质由聚合物固态电解质、硫化物固态电解质和聚合物固态电解质复合而成,其中:聚合物固态电解质I用于与正极材料接触,改善硫化物由于空间电荷层引起的与正极材料之间的界面润湿性,提高正极材料在充放电过程中的电化学稳定性;聚合物固态电解质用于与锂金属负极接触,一方面提高硫化物与负极材料之间的润湿性,另一方面抑制在金属负极表面锂枝晶的生长。本发明的硫化物基复合电解质不仅具有较高的离子传导率,还具有较好的界面润湿性和稳定性。本发明为固态电解质材料设计和优化提供了新的思路,有利于全固态电池的进一步发展和商业化。
-
公开(公告)号:CN110112370A
公开(公告)日:2019-08-09
申请号:CN201910532902.2
申请日:2019-06-19
Applicant: 哈尔滨工业大学
IPC: H01M4/1395 , H01M4/139 , H01M4/04 , H01M4/134 , H01M4/13 , H01M4/36 , H01M4/38 , H01M4/48 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种基于3D打印的自支撑硅-石墨烯复合电极的制备方法,所述方法包括如下步骤:(1)以硅基材料和氧化石墨烯为主,加入粘结剂,制备均匀的可打印墨水;(2)利用挤压式3D打印机打印复合电极;(3)对复合电极进行干燥处理和还原处理,得到自支撑硅-石墨烯复合电极。本发明所制备的硅-石墨烯复合电极拥有大量的分级多孔结构,能够有效地缓冲硅基材料的体积膨胀,同时提高了锂离子和电子在电极中传输速率。该制备方法具有制备简单、结构可控、成本低廉的特点,具有广阔的应用前景。
-
公开(公告)号:CN110048083A
公开(公告)日:2019-07-23
申请号:CN201910364154.1
申请日:2019-04-30
Applicant: 哈尔滨工业大学
IPC: H01M4/1397 , H01M4/36 , H01M4/58 , H01M4/62 , H01M10/0525 , H01M10/0562
Abstract: 本发明公开了一种全固态锂电池正极的制备方法,所述方法包括如下步骤:(1)对FeS2进行球磨;(2)将步骤(1)球磨后的FeS2与硫化物固态电解质原料依次加入无水乙腈溶液中,得到混合溶液;(3)将步骤(2)所得的混合溶液置于磁力搅拌器上搅拌;(4)将步骤(3)得到的混合溶液烘干;(5)将步骤(4)所得的混合粉体置于管式烧结炉中,在氩气气氛下进行热处理,即得正极活性物质FeS2@LPS;(6)将步骤(5)所得正极活性物质FeS2@LPS与硫化物固态电解质、导电剂研磨混合,即得到全固态电池正极。本发明制备方法简单,并且活性物质材料FeS2来源广泛,成本较低,适合大规模制备,具有实用价值。
-
公开(公告)号:CN105406124B
公开(公告)日:2019-03-19
申请号:CN201511016933.0
申请日:2015-12-31
Applicant: 哈尔滨工业大学
IPC: H01M10/0567 , H01M10/0566 , H01M10/42 , H01M10/0525
Abstract: 本发明公开了一种提高锂离子电池高温及高电压性能的电解液及其在锂离子电池中的应用,所述电解液包括锂盐、有机溶剂和添加剂,其中:所述添加剂由甲氧基二苯基膦和负极表面成膜添加剂组成,甲氧基二苯基膦在电解液中的含量为0.01~10.0wt.%,负极表面成膜添加剂在电解液中的含量为0.02~5wt.%;所述有机溶剂由10~50wt.%环状碳酸酯、30~70wt.%线性碳酸酯组成;所述锂盐在电解液中浓度为0.5~2.5mol/L。本发明所提供的电解液,同时使用MDP和负极表面成膜添加剂作为组合添加剂,能够改善锂离子电池正极材料在高电压下的稳定性,抑制电解液在正极表面分解,改善高电压锂离子电池在常温和高温下的循环性能。
-
公开(公告)号:CN108767216A
公开(公告)日:2018-11-06
申请号:CN201810462780.X
申请日:2018-05-15
Applicant: 哈尔滨工业大学
IPC: H01M4/36 , H01M4/525 , H01M4/505 , H01M4/485 , H01M10/0525
Abstract: 本发明公开了一种具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法,所述合成方法具体包括:溶液的配置、前驱体的制备、高温固相嵌锂,其中前驱体的制备选用共沉淀法,通过将两种具有不同浓度的金属盐水溶液d和e的逐步混合来获得组成逐渐变化的金属盐水溶液,并将其作为共沉淀反应的反应原料加入到液相反应釜中,以及控制金属盐水溶液的泵入速率Q1
-
公开(公告)号:CN108649205A
公开(公告)日:2018-10-12
申请号:CN201810463496.4
申请日:2018-05-15
Applicant: 哈尔滨工业大学
IPC: H01M4/36 , H01M10/0525 , H01M4/04
Abstract: 本发明公开了具有变斜率浓度梯度掺杂结构的锂离子电池正极材料及其合成方法,为了解决常规掺杂方法带来的容量和倍率性能的衰减等问题,本发明通过具有变斜率浓度梯度结构的元素掺杂获得从材料颗粒中心到表面掺杂元素的浓度持续变化的锂离子电池正极材料,且变化的速率由内到外逐渐加快,因此在材料内部掺杂元素的浓度变化缓慢,在材料表面掺杂元素的浓度迅速变化,掺杂元素浓度的变化主要集中在表面层,本发明方法在不引入副作用的前提下同时提升了材料内部结构和表面的稳定性,降低充放电循环过程中材料的相变、体积变化、过渡金属元素溶解等问题,大幅提升材料的循环寿命和安全性能。
-
公开(公告)号:CN105789621B
公开(公告)日:2018-09-11
申请号:CN201610141585.8
申请日:2016-03-14
Applicant: 哈尔滨工业大学
IPC: H01M4/58 , H01M10/0525
Abstract: 一种降低熔融态锂源表面张力从而改善锂离子电池正极材料高温固相烧结过程的方法,本发明涉及一种改善锂离子电池正极材料高温固相烧结过程的方法,属于锂离子电池材料及其制造工艺技术领域。本发明的目的是为了解决锂离子电池正极材料高温固相烧结过程中因为熔融态的锂源分布不均匀及浸润不完全导致的反应不均衡和反应不充分的问题,进而改善了充放电循环过程中材料的倍率性能、循环稳定性和热稳定性等问题。本发明改善的过程按以下步骤进行:一、锂源预处理;二、锂源与前驱体材料混合;三、锂源与前驱体材料充分浸润;四、高温烧结。本发明制备的材料用于锂离子电池正极材料。
-
公开(公告)号:CN108502937A
公开(公告)日:2018-09-07
申请号:CN201810345250.7
申请日:2018-04-17
Applicant: 哈尔滨工业大学
IPC: C01G53/00 , H01M4/505 , H01M4/525 , H01M10/0525
Abstract: 本发明公开了一种球形锂离子电池正极多元前驱体材料及制备方法和由该前驱体材料制备而成的多元正极材料及制备方法,多元前驱体材料组成为NixCoyMnzM1-x-y-z(OH)2或NixCoyMnzM1-x-y-zCO3,多元正极材料的化学组成为LiNixCoyMnzM1-x-y-zO2,前驱体材料的制备方法为引入晶种的共沉淀法,通过引入晶种的共沉淀法,实现了多元前驱体材料共沉淀反应初期大量成核的工艺,并利用共沉淀法搅拌均匀、容易控制的特点,使制备的多元前驱体材料具有球形度高、振实密度高、粒径分布集中、粒径小(1-6μm)的特点,这种多元前驱体材料,由于粒径分布集中、粒径小,使烧结后的正极材料均一性高,提升正极材料在充放电过程中的结构稳定性,提高材料的循环性能和倍率性能,方法简单,成本低,效率高,适用于工业化生产。
-
-
-
-
-
-
-
-
-