基于压缩图的数据存储方法、存储介质、存储装置和服务器

    公开(公告)号:CN110389953A

    公开(公告)日:2019-10-29

    申请号:CN201910508926.4

    申请日:2019-06-12

    Abstract: 本发明涉及一种基于压缩图的数据存储方法、系统和存储介质,该方法包括:步骤100,生成点表逻辑定义,根据该逻辑定义构建点表,并向该点集中插入数据;步骤200,生成边表逻辑定义,根据该逻辑定义构建边表,从所述点表中选择与该边表相关联的点表,并向所述边表中插入数据;步骤300,设置和执行压缩图定义命令,生成所述压缩图的建图逻辑,设置函数获取与所述压缩图定义关联的所述边表,形成边集聚合组,并生成与所述压缩图定义关联的所述点表的代理结构;步骤400,设置和执行压缩图重置命令,根据所述压缩图的建图逻辑构建所述压缩图。本方法降低了多次建图与建多类图的开销,增加了图构建的灵活性与表示性,减少了重复建图的排序工作量。

    一种基于动态代码生成的图计算方法及系统

    公开(公告)号:CN110287378A

    公开(公告)日:2019-09-27

    申请号:CN201910441015.4

    申请日:2019-05-24

    Abstract: 本发明提出一种基于动态代码生成的图计算方法及系统,包括:根据建图请求,构造包含图操作原语的中间图结构,并将中间图结构与图名关联后存入中间图缓存器;根据图算法请求,生成由外部代码字节码构成的图算法结构,发送至图算法缓存器;以执行请求检索中间图缓存器和图算法缓存器,得到待执行中间图结构、待执行图算法结构与参数列表组成的三元组,并在本地代码缓存器中检索三元组,得到本地代码缓存器中的执行对象,以执行得到结果。本发明在本地代码空间中注入生成代码,消除了数据交换的开销;构建了可二次编译的中间图结构,使图数据的访问代码可进行编译优化;同时增加了中间图结构缓存与图算法缓存,规避了图计算的预处理开销。

    基于细粒度匹配信号的文本相关性度量方法和系统

    公开(公告)号:CN109753649A

    公开(公告)日:2019-05-14

    申请号:CN201811466325.3

    申请日:2018-12-03

    Abstract: 本发明涉及一种基于细粒度匹配信号的文本相关性度量方法和系统,包括:获取待语义匹配的两段文本,将该文本中每一个词映射为词向量,根据其中一段文本中每一个词的词向量,与另一段文本中每一个词向量的语义相似度,将所有该语义相似度集合成二维实数矩阵,作为匹配矩阵;将该匹配矩阵中每个元素的语义相似度转换为灰度值,得到灰度图,使用针对二维数据的卷积神经网络结构对该灰度图进行图像模式提取,得到特征图,该特征图经过全连接网络并通过逻辑斯谛函数处理后,得到0-1之间的一个分数,将该分数作为该两段文本之间的相关性。本发明能够构建细粒度匹配信号,提取多层次的匹配模式。在多种不同任务的实际数据集上的效果突出。

Patent Agency Ranking