-
公开(公告)号:CN111333022B
公开(公告)日:2023-04-07
申请号:CN202010188599.1
申请日:2020-03-17
Applicant: 中北大学
Abstract: 本申请公开了一种高密度MEMS微纳线圈柔性异质集成方法,包括:准备刚性基底并清洗;在刚性基底上生长剥离层;在剥离层上沉积多层MEMS微纳线圈,相邻层的MEMS微纳线圈之间沉积薄膜隔离层,将多层MEMS微纳线圈互连,并在最顶层沉积薄膜绝缘层;在薄膜绝缘层上沉积薄膜种子层,再电镀金属应力层;调节金属应力层的厚度,将MEMS微纳线圈剥离;将MEMS微纳线圈与柔性基底进行集成;依次将金属应力层、薄膜种子层去除;在薄膜绝缘层上开孔;将多层MEMS微纳线圈进行互连并折叠。本申请通过可控剥离方法将刚性基底上多层互连的MEMS微纳线圈转移至柔性基底上,并通过柔性基底折叠形成多层堆叠结构,大幅提升线圈匝数,解决狭小空间下MEMS电磁能量采集器的低输出电压难题。
-
公开(公告)号:CN115116829A
公开(公告)日:2022-09-27
申请号:CN202211036453.0
申请日:2022-08-29
Applicant: 中北大学
IPC: H01L21/027 , H01L41/27 , H01L41/332 , B81C1/00
Abstract: 本发明属于半导体器件加工制造技术领域,公开了一种铌酸锂单晶薄膜畴壁增强力电耦合响应器件的制备方法,利用原子力显微镜在铌酸锂单晶薄膜上施加电压实现电畴翻转,采用光刻工艺在已经实现电畴翻转的铌酸锂薄膜/硅基键合片表面进行对准标记制备并完成金属电极溅射,使用IBE干法刻蚀和RIE工艺实现铌酸锂和二氧化硅层的图形化,最后采用深硅技术刻蚀剩余硅层并封装,完成器件制备。本发明采用铁电材料电畴调控和MEMS微纳加工工艺相结合,制备铌酸锂单晶薄膜力电耦合器件,有效解决传统力电耦合器件力电耦合效率低和功能集成化低等问题,制得器件无铅无毒,使用寿命长,可重复使用,具有对环境友好、稳定性高、灵敏度高和宽温区等优点。
-
公开(公告)号:CN114665005A
公开(公告)日:2022-06-24
申请号:CN202210275930.2
申请日:2022-03-21
Applicant: 中北大学
IPC: H01L41/316 , C23C14/35 , C23C16/40 , C23C16/50 , C23C16/56 , H01L41/113 , H01L41/187 , H01L41/27
Abstract: 本申请提供了一种d33模式铁电单晶薄膜压电振动传感器及其制备方法,通过将铌酸锂与带有氧化层的硅基底键合,再依次进行减薄、化学机械抛光和清洗,得到铌酸锂单晶薄膜;在铌酸锂铁电单晶薄膜表面利用溅射刻蚀法制备对准标记,在其表面采用溅射剥离法制备表面电极,并刻蚀铌酸锂单晶薄膜使其图形化,最后在硅基底正面形成质量块和悬臂,并从硅基背面对其进行释放制得产物。本申请的制备方法可将铁电单晶铌酸锂薄膜与带氧化层的硅基很好键合,并完成了宽频带、高电压输出的元器件的制备,工艺可行性和重复率高。本申请制得产物具有很高的机电转换效率、输出电压和低温环境输出性能下降小的特点。
-
公开(公告)号:CN114295261A
公开(公告)日:2022-04-08
申请号:CN202210025798.X
申请日:2022-01-11
Applicant: 中北大学
Abstract: 本发明属于柔性力学传感器以及微机电技术领域,具体为一种表面具有经过修饰后的微锥台阵列结构的柔性薄膜及其制备方法,及基于此柔性薄膜制备的传感器,解决了背景技术中的技术问题,柔性薄膜的正面具有均匀分布的多个微米级正四棱锥台结构,正四棱锥台结构的表面辅以多个随机、紧密排列的纳米级凸起结构。本发明的表面具有经过修饰后的微锥台阵列结构的柔性薄膜表面具有微纳米级别结构,可有效提升薄膜表面比表面积,利用本发明的三种柔性力学传感器的灵敏度高、微弱压力感知能力强和测量范围广;本发明所述的方法操作步骤简单,而且实施条件要求低,满足生产成本等要求,可利用硅片模板批量制备柔性薄膜。
-
公开(公告)号:CN113475840A
公开(公告)日:2021-10-08
申请号:CN202110801960.8
申请日:2021-07-15
Applicant: 中北大学
IPC: A45F3/08 , A45C15/00 , G05B19/042 , H02J7/14 , H02K7/18
Abstract: 本发明公开了一种自适应悬浮减重发电一体化的背包及其控制方法,该背包包括背板、载荷板、齿轮箱、发电机和控制模块,背板上设有导轨,载荷板通过滑块与导轨滑动连接;背板上设有滚珠丝杆副,丝杆与导轨相互平行,载荷板与螺母固定连接;齿轮箱与丝杆连接,发电机与齿轮箱连接,控制模块与发电机电连接;控制模块包括整流稳压电路、阻抗调节电路、微控制器、可充电电源、速度传感器、质量传感器以及振动传感器;微控制器根据速度传感器、质量传感器和振动传感器所采集的信息,通过指定算法,对阻抗调节电路的阻抗进行调节;本发明能够根据人体的运动状态,自适应调节阻尼,实现较好的悬浮减重及电能收集效果。
-
公开(公告)号:CN107623068B
公开(公告)日:2020-11-27
申请号:CN201710839315.9
申请日:2017-09-18
Applicant: 中北大学
IPC: H01L41/047 , H01L41/113 , H01L41/22 , H02N2/18
Abstract: 本发明公开了一种基于叉指电极结构的薄膜式压电纳米发电机,包括压电薄膜层和叉指电极薄膜层;所述叉指电极薄膜层由单边电极A和单边电极B构成;所述叉指电极薄膜层半嵌入压电薄膜层中。其中,所述压电薄膜层通过将压电材料填充到柔性聚合物材料中制得;所述叉指电极薄膜层中的单边电极A和单边电极B均是通过将导电颗粒填充到柔性聚合物材料中制得。该纳米发电机通过采用d33耦合模式,在保证良好的柔性和可拉伸性的基础上,解决了普通压电式纳米发电机在d31耦合模式下存在的输出电压小的问题。
-
公开(公告)号:CN111739271A
公开(公告)日:2020-10-02
申请号:CN202010576248.8
申请日:2020-06-22
Applicant: 中北大学
Abstract: 本申请公开了一种采空区高温点无线监测系统,包括:由温度采集器、接收器、交换机以及上位机,所述温度采集器间隔布防在采空区的氧化区内,所述接收器布放在运巷和材巷内,所述温度采集器和所述接收器采用Mesh无线网络网格自组网协议通信连接,所述接收器通过光纤与所述交换机相连,所述交换机与所述上位机通过光纤或RJ45总线相连。本申请主要应用于煤矿采空区的温度监测,通过布放在采空区氧化区的温度采集器和布放在材巷和运巷内的接收器,可监测煤层内部的温度且可靠性高;同时使用本申请中温度采集器阵列获取到的温度数据及具体算法可计算出温度场并定位高温点,实现对采空区氧化区温度的监测,保证煤矿安全高效生产和可持续发展。
-
公开(公告)号:CN111028805A
公开(公告)日:2020-04-17
申请号:CN201911330165.4
申请日:2019-12-20
Applicant: 中北大学
IPC: G09G3/36
Abstract: 本申请公开了一种基于逆变电路的液晶驱动方法,其电路结构包括:液晶器件以及液晶驱动电路,所述液晶驱动电路与所述液晶器件两端电极相连;所述液晶驱动电路包括RC施密特震荡电路和反相器,所述RC施密特震荡电路的输入端、电源端均与输入的直流信号源连接;所述RC施密特震荡电路的两个输出端分别为所述反相器的输入端和输出端;所述反相器的电源端与输入的直流信号源连接。本申请通过RC施密特震荡电路和反相器的特定连接方式组成的液晶驱动电路,通过将输入的直流信号转换为交流方波信号从而实现了对液晶盒或液晶膜的驱动,同时具有驱动方式简单,驱动电路体积小和成本低等优势。
-
公开(公告)号:CN107246910B
公开(公告)日:2019-11-29
申请号:CN201710450802.6
申请日:2017-06-15
Applicant: 中北大学
IPC: G01H11/06
Abstract: 本发明公开了一种基于压阻效应的MEMS三维同振型矢量水听器,包括检测来自水平方向声信号的同振柱体振子模块和检测来自竖直方向声信号的同振球形振子模块;同振柱体振子模块主要包括框型基座、横梁、中心连接体、柱形聚乙烯拾振单元、压敏电阻;同振球形振子模块主要包括框型基座、横梁、环形连接体、球形聚乙烯拾振单元、压敏电阻。本发明设计合理,从理论出发,设计一种共模输出、差模抑制的高灵敏度,宽工作频带的MEMS三维同振型矢量水听器,与现有技术相比,本发明采用微纳加工技术,实现了三维同振型矢量水听器的微型化。
-
公开(公告)号:CN105846647B
公开(公告)日:2019-01-04
申请号:CN201610243435.8
申请日:2016-04-19
Applicant: 中北大学
IPC: H02K35/04
Abstract: 本发明提供一种线圈悬浮型振动驱动电磁式能量采集器,包括顶盖、顶部弹簧、底部外壳、圆形永磁铁、平面螺旋线圈保护盖、平面螺旋线圈、线圈绕柱、斥力永磁铁、斥力永磁铁定位底盘、线圈悬浮腔。本发明依靠悬浮线圈中磁通量的改变完成振动能和电能的转换,线圈主要依靠小型斥力永磁铁与固定的圆形永磁铁之间的斥力完成悬浮,小型斥力永磁铁的磁场范围较小,不超出整体外壳范围,如此,小型斥力永磁体不与外界振动机器产生磁力作用。同时,线圈悬浮运动摩擦力小,在电磁阻尼与本身重力的相互作用下往复运动,迅速持久,从而可对机器振动能量做多次高效采集。
-
-
-
-
-
-
-
-
-