-
公开(公告)号:CN114721401B
公开(公告)日:2025-02-11
申请号:CN202210564768.6
申请日:2022-05-23
Applicant: 重庆邮电大学
IPC: G05D1/43 , G05D1/246 , G05D1/644 , G05D1/247 , G05D109/10
Abstract: 本发明请求保护一种基于改进A*算法的高效路径规划方法,该方法一种在大面积地图环境下快速得到一条最优或者次优路径的改进A*算法。首先,相对于传统A*算法8邻域的搜索方式,本文使用了适用于大面积栅格地图下的4邻域搜索方式,大大减少了对一些不必要节点的计算。其次,本文改进了启发函数,同时对启发函数的预估代价给予不同的权重,使得移动机器人在规划过程中根据与起始点和目标点距离灵活计算节点的预估代价。最后,通过选取多组距离不同的目标点对改进前后的A*算法进行了仿真试验,对比了各组规划的用时时间、访问节点的数量、以及路径的平滑性,验证了所提算法在路径规划上的高效性。
-
公开(公告)号:CN114721401A
公开(公告)日:2022-07-08
申请号:CN202210564768.6
申请日:2022-05-23
Applicant: 重庆邮电大学
IPC: G05D1/02
Abstract: 本发明请求保护一种基于改进A*算法的高效路径规划方法,该方法一种在大面积地图环境下快速得到一条最优或者次优路径的改进A*算法。首先,相对于传统A*算法8邻域的搜索方式,本文使用了适用于大面积栅格地图下的4邻域搜索方式,大大减少了对一些不必要节点的计算。其次,本文改进了启发函数,同时对启发函数的预估代价给予不同的权重,使得移动机器人在规划过程中根据与起始点和目标点距离灵活计算节点的预估代价。最后,通过选取多组距离不同的目标点对改进前后的A*算法进行了仿真试验,对比了各组规划的用时时间、访问节点的数量、以及路径的平滑性,验证了所提算法在路径规划上的高效性。
-