-
公开(公告)号:CN113128369B
公开(公告)日:2022-07-01
申请号:CN202110357123.0
申请日:2021-04-01
Applicant: 重庆邮电大学
IPC: G06V10/774 , G06V40/16 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明请求保护一种融合均衡损失的轻量级网络人脸表情识别方法,属于模式识别技术领域。包括以下步骤:首先,提出了样本类别损失函数,利用class_weight设置权重,将样本类别损失融入网络训练之中;其次,提出了样本质量损失函数,利用表情区域关键点定位的方法,筛选出表情质量好坏的图像样本,并通过权重影响的方式融入损失函数之中;然后,利用网络注意力机制,设计了多维注意力损失函数,将两种网络注意力机制形成的特征作为鉴别标签与预测值的度量指标,从而提高网络模型分类准确度;最后,将上述所提三种损失在基于Keras框架的网络模型中进行级联融合形成EQ‑loss,并将其添加到轻量级网络框架中,实现端到端的人脸表情识别。
-
公开(公告)号:CN111950389B
公开(公告)日:2022-07-01
申请号:CN202010713146.6
申请日:2020-07-22
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于轻量级网络的深度二值特征人脸表情识别方法,属于模式识别技术领域。所述方法主要包括以下步骤:首先,构建一套将参数二值化的卷积神经网络框架,将二值卷积模式植入每层残差网络层中,形成双向决策网络模型;然后,对输入网络的图像进行基于像素梯度的LBP动态半径特征提取,构建具有Huffman权重的LBP权重图谱和具有Huffman权重的LBP二值图谱;再将LBP权重图谱、LBP二值图谱与原始图像作为BRCNN网络的多输入特征,构建深度二值特征;最后,将深度二值特征级联后进行分类。本发明极大减少了网络训练时的参数量,降低了网络的计算代价;增强了特征的表达能力,提升了本方法在人脸表情识别的鲁棒性和速率。
-
公开(公告)号:CN113128369A
公开(公告)日:2021-07-16
申请号:CN202110357123.0
申请日:2021-04-01
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种融合均衡损失的轻量级网络人脸表情识别方法,属于模式识别技术领域。包括以下步骤:首先,提出了样本类别损失函数,利用class_weight设置权重,将样本类别损失融入网络训练之中;其次,提出了样本质量损失函数,利用表情区域关键点定位的方法,筛选出表情质量好坏的图像样本,并通过权重影响的方式融入损失函数之中;然后,利用网络注意力机制,设计了多维注意力损失函数,将两种网络注意力机制形成的特征作为鉴别标签与预测值的度量指标,从而提高网络模型分类准确度;最后,将上述所提三种损失在基于Keras框架的网络模型中进行级联融合形成EQ‑loss,并将其添加到轻量级网络框架中,实现端到端的人脸表情识别。
-
公开(公告)号:CN111950389A
公开(公告)日:2020-11-17
申请号:CN202010713146.6
申请日:2020-07-22
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于轻量级网络的深度二值特征人脸表情识别方法,属于模式识别技术领域。所述方法主要包括以下步骤:首先,构建一套将参数二值化的卷积神经网络框架,将二值卷积模式植入每层残差网络层中,形成双向决策网络模型;然后,对输入网络的图像进行基于像素梯度的LBP动态半径特征提取,构建具有Huffman权重的LBP权重图谱和具有Huffman权重的LBP二值图谱;再将LBP权重图谱、LBP二值图谱与原始图像作为BRCNN网络的多输入特征,构建深度二值特征;最后,将深度二值特征级联后进行分类。本发明极大减少了网络训练时的参数量,降低了网络的计算代价;增强了特征的表达能力,提升了本方法在人脸表情识别的鲁棒性和速率。
-
-
-