-
公开(公告)号:CN116196781B
公开(公告)日:2024-11-05
申请号:CN202310421419.3
申请日:2023-04-19
Applicant: 清华大学
Abstract: 本发明提供一种提高中空纤维膜亲水性的可控改性方法,该改性方法包括以下步骤:(1)将氨基化的中空纤维膜原料置于含有烯基单体的溶液中,于10‑70℃反应1‑24h后,得到纤维膜中间体;将纤维膜中间体置于含有多胺单体的溶液中,于10‑70℃反应1‑24h后,得到一次改性的中空纤维膜;(2)以一次改性的中空纤维膜为原料,重复执行步骤(1)一次,得到改性中空纤维膜。本发明采用原位改性和逐步合成的方法,能够实现改性分子在中空纤维膜上接枝均匀,最大限度地保证膜的孔径分布均匀,从而进一步提升改性中空纤维膜的耐污染能力和通量衰减率。
-
公开(公告)号:CN112811687B
公开(公告)日:2023-02-28
申请号:CN202011535649.5
申请日:2020-12-22
Applicant: 清华大学
Abstract: 本发明提供了一种含盐废水的处理方法,对纳滤处理后的含盐废水进行双极膜电渗析处理,分别得到酸性产物、碱性产物和中间含盐废水;对所述中间含盐废水进行电渗析处理,得到淡化液和浓缩液,将所述浓缩液返回参与所述双极膜电渗析处理。本发明的含盐废水处理方法不仅能够以低能耗实现对含盐废水的高效处理,更是能够在处理过程中得到工业产品,提升处理含盐废水的经济效益,降低处理含盐废水的经济成本。
-
公开(公告)号:CN112657342B
公开(公告)日:2022-12-06
申请号:CN202011390438.7
申请日:2020-12-02
Applicant: 清华大学
Abstract: 本发明涉及一种聚酰胺中空纤维复合分离膜及其制备方法,所述方法包括:a)混料:将高聚物、稀释剂和酰氯单体混合均匀形成铸膜液;b)复合膜制备:将铸膜液用挤出机挤出形成中空纤维膜状,进入胺单体水溶液中冷却水浴,在固化成膜的同时酰氯单体与胺单体发生界面聚合生成聚酰胺层,烘干得到含有高聚物多孔支撑层与聚酰胺分离层的复合膜;c)复合膜后处理:将步骤b)中获得的复合膜浸入萃取剂中,萃取出膜中的稀释剂得到聚酰胺中空纤维复合分离膜。通过将酰氯单体混合在支撑层铸膜液中,使其能够均匀分散在制得的支撑层表面,同时将酰氯单体预先分散在支撑层中能有效提高聚酰胺分离层与支撑层的结合力,提高所制得中空纤维复合膜结构的稳定性。
-
公开(公告)号:CN113600027A
公开(公告)日:2021-11-05
申请号:CN202110905698.1
申请日:2021-08-06
Applicant: 清华大学
Abstract: 本发明提供一种中空纤维超滤膜及其制备方法和应用,中空纤维超滤膜包括膜本体,所述膜本体围设成中空结构,所述膜本体包括微孔主体层、以及位于所述微孔主体层正反两个表面的致密层,所述致密层的平均孔径为5‑50nm,所述微孔主体层的平均孔径为100‑2000nm。本发明提供的中空纤维超滤膜中微孔主体层与双致密层结构的构筑,使得中空纤维超滤膜同时具备较高截留率和耐污染能力,尤其对20nm二氧化硅粒子的截留率可以达到99.5%以上,可应用于水体净化和蛋白质分离等方面。
-
公开(公告)号:CN112403289A
公开(公告)日:2021-02-26
申请号:CN202011130843.5
申请日:2020-10-21
Applicant: 清华大学
Abstract: 本发明提供了利用热致相分离与非溶剂致相分离法耦合以制备出具有梯度孔结构的聚(4‑甲基‑1‑戊烯)中空纤维膜的方法,包括:首先将聚(4‑甲基‑1‑戊烯)与稀释剂高温混匀,通过挤出一次成型,经空气段后进入冷却浴冷却发生热致相分离与非溶剂相分离,最后萃取出稀释剂得到中空纤维膜。本发明方法制备的中空纤维膜具有提高的安全性,并且易于调控聚(4‑甲基‑1‑戊烯)‑稀释剂体系中热致相分离与非溶剂致相分离过程,从而获得具有更好力学强度、气体渗透性及耐血浆浸润性的聚(4‑甲基‑1‑戊烯)膜。本发明还提供聚(4‑甲基‑1‑戊烯)中空纤维膜及其用于人工膜肺领域的用途。
-
公开(公告)号:CN105169974B
公开(公告)日:2017-11-14
申请号:CN201510632621.6
申请日:2015-09-29
Applicant: 清华大学
Abstract: 一种中空纤维纳滤膜及其制备方法,该纳滤膜由聚合物材料内层、聚合物材料外层以及由内层和外层聚合物材料的分子链相互缠绕的中间过渡层组成。其制备方法是内层聚合物材料和外层聚合物材料溶于高温稀释剂中,采用两个同向双螺杆挤出机和三通道喷丝头;通过温度或溶剂交换致相分离的方法一步获得双连续孔道结构的内层和纳孔结构外层,即获得中空纤维纳滤膜。本发明具备高强度、耐反冲洗、高选择分离性能等特点。
-
公开(公告)号:CN102516584A
公开(公告)日:2012-06-27
申请号:CN201110417352.3
申请日:2011-12-14
Applicant: 清华大学
IPC: C08J9/42 , C08J9/40 , C08J7/16 , C08J7/12 , C08L27/16 , D06M14/10 , D06M13/463 , D06M101/22
Abstract: 一种聚偏氟乙烯微孔膜抗蛋白质污染的改性方法,该方法通过两步聚合接枝法在聚偏氟乙烯膜表面形成一层两性离子共聚物层,具体是首先在聚偏氟乙烯微孔膜表面发生烯酸羟酯类化合物的原子自由基聚合,然后将膜置于含有两性离子的混合溶液中进行碱金属离子引发共聚反应,从而得到抗蛋白质污染的聚偏氟乙烯微孔膜。由此方法得到的改性聚偏氟乙烯微孔膜的亲水性和强度增强,经过蛋白质溶液过滤后的通量恢复率超过97%。
-
公开(公告)号:CN101485960B
公开(公告)日:2011-08-17
申请号:CN200910076285.6
申请日:2009-01-09
Applicant: 清华大学
CPC classification number: B01D67/0093 , B01D71/34 , B01D2323/30
Abstract: 聚偏氟乙烯多孔膜表面互穿聚合物网络的改性方法,其特征是:对聚偏氟乙烯多孔膜表面先在乙烯醇类聚合物和醛类化合物水溶液中浸泡后,再浸泡入含有胺类化合物的水溶液中,胺类化合物在聚偏氟乙烯多孔膜的表面与聚偏氟乙烯发生交联,同时用乙烯醇类亲水性聚合物在聚偏氟乙烯膜表面与醛类化合物发生交联反应,两个互不干扰的交联反应同时交错进行,并在聚偏氟乙烯多孔膜表面实现分子间的缠结,形成了具有互穿聚合物网络的亲水化结构,同时实现聚偏氟乙烯多孔膜的永久亲水性与溶剂耐受性。
-
公开(公告)号:CN119786889A
公开(公告)日:2025-04-08
申请号:CN202510273216.3
申请日:2025-03-10
Applicant: 清华大学 , 上海恩捷新材料科技有限公司
IPC: H01M50/457 , H01M50/414 , H01M50/417 , H01M50/403 , H01M10/0525
Abstract: 本发明提供一种具有离子选择性的聚烯烃涂覆隔膜、制备方法及应用,聚烯烃涂覆隔膜由多孔聚烯烃支撑层,以及位于多孔聚烯烃支撑层两面的第一离子选择性皮层和第二离子选择性皮层共同构成;第一/二离子选择性皮层均由本征微孔聚合物PIM或改性的本征微孔聚合物PIM组成;PIM类材料具有高比表面积、丰富的微孔结构和良好的电解液亲和性;这使得聚烯烃涂覆隔膜具有良好的浸润性及锂离子透过性,有效提升隔膜整体的机械性及耐热性,并保持轻量化;同时还大幅度降低了隔膜对Mn、Ni、Fe等金属离子的扩散系数,有效避免了使用现有隔膜的锂离子电池正极材料中,Mn、Ni、Fe等金属离子在电池运行时溶出后污染电池的负极,可有效延长电池寿命。
-
公开(公告)号:CN117861450A
公开(公告)日:2024-04-12
申请号:CN202410166386.7
申请日:2024-02-05
Applicant: 清华大学
Abstract: 本发明提供一种氧合膜及其制备方法和应用。本发明提供一种用于氧气和二氧化碳的交换的氧合膜,其包括微孔中空纤维膜和覆盖在微孔中空纤维膜表面的单层介孔二氧化硅纳米颗粒层;微孔中空纤维膜为聚丙烯膜;介孔二氧化硅纳米颗粒层由介孔二氧化硅纳米颗粒平铺而成,介孔二氧化硅纳米颗粒至少部分嵌入微孔中空纤维膜表面的微孔中,且介孔二氧化硅纳米颗粒通过化学键与微孔中空纤维膜连接。本发明提供的氧合膜在兼顾PP膜高气体通量的基础上,提高了PP膜的疏水性,提高其抗血液渗漏性,延长PP氧合膜的使用寿命,解决了PP膜寿命过短的问题。
-
-
-
-
-
-
-
-
-