一种极化SAR图像多尺度描述基元的稀疏流形分类方法

    公开(公告)号:CN106682701A

    公开(公告)日:2017-05-17

    申请号:CN201710018218.3

    申请日:2017-01-10

    Applicant: 武汉大学

    CPC classification number: G06K9/6269 G06K9/46

    Abstract: 本发明公开了一种极化SAR图像多尺度描述基元的稀疏流形分类方法,为了解决时间序列极化SAR图像非相干信息和相干信息的提取和融合问题,以及极化数据过大、SAR乘性模型非相干的问题,通过一种本质上的特征融合以及流形稀疏表达,可以有效对时间序列极化SAR图像进行分类。本发明公开了一种结合极化非相干特征与时序相干特征两个尺度信息的多尺度描述基元的构造方法,并利用一个压缩感知和稀疏流形表达的多层次的非线性产生式模型来对其进行特征提取和信息降维,这种方法能对时间序列极化SAR图像进行有效的分类,多尺度描述基元也可以成为一种通用的时间序列极化SAR图像处理的基础技术。

    一种极化SAR图像多尺度描述基元的稀疏流形分类方法

    公开(公告)号:CN106682701B

    公开(公告)日:2019-06-11

    申请号:CN201710018218.3

    申请日:2017-01-10

    Applicant: 武汉大学

    Abstract: 本发明公开了一种极化SAR图像多尺度描述基元的稀疏流形分类方法,为了解决时间序列极化SAR图像非相干信息和相干信息的提取和融合问题,以及极化数据过大、SAR乘性模型非相干的问题,通过一种本质上的特征融合以及流形稀疏表达,可以有效对时间序列极化SAR图像进行分类。本发明公开了一种结合极化非相干特征与时序相干特征两个尺度信息的多尺度描述基元的构造方法,并利用一个压缩感知和稀疏流形表达的多层次的非线性产生式模型来对其进行特征提取和信息降维,这种方法能对时间序列极化SAR图像进行有效的分类,多尺度描述基元也可以成为一种通用的时间序列极化SAR图像处理的基础技术。

Patent Agency Ranking