-
公开(公告)号:CN110555990A
公开(公告)日:2019-12-10
申请号:CN201910809828.4
申请日:2019-08-29
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于LSTM神经网络的有效停车时空资源预测方法,首先,根据不同日子特性条件下的历史数据,采用LSTM神经网络建立停车时长预测模型,对未来某一时段内进场车辆的停车时长进行预估,得到预估消耗的停车资源;其次,建立下一时段内有效停车时空资源预测模型,通过综合当前统计时段内,进出场车辆与不出场车辆的时空利用数据信息,结合前一时段有效停车时空资源量,计算出下一时段的有效停车时空资源量。本发明方法提出两个模型以从时空资源的角度去呈现和计算停车场资源,模型鲁棒性好,预测结果精确度较高,对未来停车场实现高度共享和智慧化的停车预约服务与停车资源调度分配奠定了理论基础。
-
公开(公告)号:CN110555990B
公开(公告)日:2021-04-13
申请号:CN201910809828.4
申请日:2019-08-29
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于LSTM神经网络的有效停车时空资源预测方法,首先,根据不同日子特性条件下的历史数据,采用LSTM神经网络建立停车时长预测模型,对未来某一时段内进场车辆的停车时长进行预估,得到预估消耗的停车资源;其次,建立下一时段内有效停车时空资源预测模型,通过综合当前统计时段内,进出场车辆与不出场车辆的时空利用数据信息,结合前一时段有效停车时空资源量,计算出下一时段的有效停车时空资源量。本发明方法提出两个模型以从时空资源的角度去呈现和计算停车场资源,模型鲁棒性好,预测结果精确度较高,对未来停车场实现高度共享和智慧化的停车预约服务与停车资源调度分配奠定了理论基础。
-