基于非对称多层分解的ISAR与VIS图像融合方法

    公开(公告)号:CN116167956A

    公开(公告)日:2023-05-26

    申请号:CN202310313924.6

    申请日:2023-03-28

    Applicant: 无锡学院

    Abstract: 本发明公开了一种基于非对称多层分解的ISAR与VIS图像融合方法,载入空间分辨率相同的逆合成孔径雷达图像与可见光图像,比较逆合成孔径雷达图像与可见光图像的加权空间频率方差的大小,将两幅图像分为细节图像Ia和粗糙图像Ib;使用多层高斯边窗滤波器分解框架对Ia和Ib分别进行分解,获得Ia的细节保留层Sda、边缘保留层Sea、基本能量层Sga、Ib的细节保留层Sdb、边缘保留层Seb和基本能量层Sgb;通过获得的Sda对Sdb进行引导融合策略获得Ib最终的非对称细节保留融合层Sfb;使用局部方差与空间频率构造判别标准对Sda和Sfb进行融合,获得最终的细节保留融合层Sfd;利用ω对Sea和Seb进行融合,获得最终的边缘保留融合层Sfe;将Sga与Sgb融合,获得最终的基本能量层Sfg;将Sfd,Sfe和Sfg相加获得最终的融合图像If。

    基于自适应权重和置信度的高光谱图像目标跟踪方法

    公开(公告)号:CN116128925B

    公开(公告)日:2025-03-14

    申请号:CN202310086475.6

    申请日:2023-02-09

    Applicant: 无锡学院

    Abstract: 本发明公开了基于自适应权重和置信度的高光谱图像目标跟踪方法,获得归一化后第一帧、第t帧和相邻帧高光谱图像,再通过主成分分析法对图像降维分别获得三张单波段的灰度图像Z1、Zt和#imgabs0#根据双孪生网络以第一帧和相邻帧为模板图像,第t帧为搜索图像,分别提取它们降维后图像的深度特征,将模板图像与搜索图像的特征俩俩朴素相关,获得初始响应图R1和相邻响应图#imgabs1#采用自适应权重w1和w2将俩个响应图融合获得融合响应图#imgabs2#分别对其进行置信度确定和尺度估计并获得当前帧高光谱图像的跟踪目标,再依据置信度确定来判断是否让第t帧的相邻帧高光谱图像对第t帧高光谱图像进行更新。

    基于自适应权重和置信度的高光谱图像目标跟踪方法

    公开(公告)号:CN116128925A

    公开(公告)日:2023-05-16

    申请号:CN202310086475.6

    申请日:2023-02-09

    Applicant: 无锡学院

    Abstract: 本发明公开了基于自适应权重和置信度的高光谱图像目标跟踪方法,获得归一化后第一帧、第t帧和相邻帧高光谱图像,再通过主成分分析法对图像降维分别获得三张单波段的灰度图像Z1、Zt和根据双孪生网络以第一帧和相邻帧为模板图像,第t帧为搜索图像,分别提取它们降维后图像的深度特征,将模板图像与搜索图像的特征俩俩朴素相关,获得初始响应图R1和相邻响应图采用自适应权重w1和w2将俩个响应图融合获得融合响应图分别对其进行置信度确定和尺度估计并获得当前帧高光谱图像的跟踪目标,再依据置信度确定来判断是否让第t帧的相邻帧高光谱图像对第t帧高光谱图像进行更新。

    基于光谱差异的高光谱图像序列降维方法

    公开(公告)号:CN116228524B

    公开(公告)日:2023-12-22

    申请号:CN202310113352.7

    申请日:2023-02-14

    Applicant: 无锡学院

    Abstract: 谱图像获得高光谱图像序列降维结果。本发明公开了一种基于光谱差异的高光谱图像序列降维方法,载入的高光谱图像序列中的第1、t帧高光谱图像进行灰度归一化,分别获得归一化后的第1、t帧高光谱图像 并且确定第1帧高光谱图像 中的选定局部区域通过 中每个像素的光谱曲线确定最大、最小光谱曲线Cmax、Cmin;确定 中第i个像素在16个波段上的灰度平均值 通过获得 中第i个像素的去均值光谱曲线Ci;确定光谱差异图 通过 确定第t帧高光谱图像第b个波段第i个像素的量化偏差 通过确定第t帧高光谱图像16个波段的总差异图通过 确定重构总差异图 通过 确定(56)对比文件何高攀;杨桄;孟强强;熊翔.采用NSCT分解和主成分分析的高光谱异常检测.自动化与仪器仪表.2015,(05期),全文.葛亮;王斌;张立明.基于偏最小二乘法的高光谱图像波段选择.计算机辅助设计与图形学学报.2011,(11期),全文.

    基于非对称多层分解的ISAR与VIS图像融合方法

    公开(公告)号:CN116167956B

    公开(公告)日:2023-11-17

    申请号:CN202310313924.6

    申请日:2023-03-28

    Applicant: 无锡学院

    Abstract: 本发明公开了一种基于非对称多层分解的ISAR与VIS图像融合方法,载入空间分辨率相同的逆合成孔径雷达图像与可见光图像,比较逆合成孔径雷达图像与可见光图像的加权空间频率方差的大小,将两幅图像分为细节图像Ia和粗糙图像Ib;使用多层高斯边窗滤波器分解框架对Ia和Ib分别进行分解,获得Ia的细节保留层Sda、边缘保留层Sea、基本能量层Sga、Ib的细节保留层Sdb、边缘保留层Seb和基本能量层Sgb;通过获得的Sda对Sdb进行引导融合策略获得Ib最终的非对称细节保留融合层Sfb;使用局部方差与空间频率构造判别标准对Sda和Sfb进行融合,获得最终的细节保留融合层Sfd;利用ω对Sea和Seb进行融合,获得最终的边缘保留融合层Sfe;将Sga与Sgb融合,获得最终的基本能量层Sfg;将Sfd,Sfe和Sfg相加获得最终的融合图像If。

    基于动态光谱感知模块的高光谱视频目标跟踪方法

    公开(公告)号:CN116863364A

    公开(公告)日:2023-10-10

    申请号:CN202310633976.1

    申请日:2023-05-31

    Applicant: 无锡学院

    Abstract: 本发明公开了基于动态光谱感知模块的高光谱视频目标跟踪方法,首先读入高光谱图像序列中的第t帧高光谱图像,通过矩阵减法确定第t帧高光谱图像的高光谱梯度图Gt,根据Gt确定Gt中第j个像素的光谱梯度向量#imgabs0#以及第k个聚类中心的光谱梯度向量Gt(k),计算#imgabs1#与Gt(k)之间的光谱角距离dj,k,根据dj,k判断第j个像素所属的聚类中心,设定迭代次数q并计算损失函数ε,重复上述步骤直至ε与q达到条件,根据最终结果得到降维后的单通道灰度图,将灰度图送入孪生网络进行特征提取,通过1×1卷积将提取的特征调整为适应特定任务的特征,利用互相关生成分类特征Pcls与回归特征Preg,通过两种动态光谱感知模块SPMcls以及SPMreg将Pcls与Preg分别增强为Pcls‑en和Preg‑en,Pcls‑en与Preg‑en经过预测头网络确定目标位置。

    基于光谱差异的高光谱图像序列降维方法

    公开(公告)号:CN116228524A

    公开(公告)日:2023-06-06

    申请号:CN202310113352.7

    申请日:2023-02-14

    Applicant: 无锡学院

    Abstract: 本发明公开了一种基于光谱差异的高光谱图像序列降维方法,载入的高光谱图像序列中的第1、t帧高光谱图像进行灰度归一化,分别获得归一化后的第1、t帧高光谱图像并且确定第1帧高光谱图像中的选定局部区域通过中每个像素的光谱曲线确定最大、最小光谱曲线Cmax、Cmin;确定中第i个像素在16个波段上的灰度平均值通过获得中第i个像素的去均值光谱曲线Ci;确定光谱差异图通过确定第t帧高光谱图像第b个波段第i个像素的量化偏差通过确定第t帧高光谱图像16个波段的总差异图通过确定重构总差异图通过确定的降维结果图K;通过K获得降维结果重复上述步骤,依次处理高光谱图像序列中每一帧高光谱图像获得高光谱图像序列降维结果。

    一种卫生间用地漏排水结构

    公开(公告)号:CN219753424U

    公开(公告)日:2023-09-26

    申请号:CN202320905129.1

    申请日:2023-04-20

    Applicant: 无锡学院

    Abstract: 本实用新型属于地漏防渗设备领域,提供了一种卫生间用地漏排水结构,包括装修仿真层和安装在装修仿真层内的地漏结构;所述装修仿真层由上往下依次包括地面装饰层、砂浆找平层、防水层和建筑结构层;所述地漏结构包括安装在所述砂浆找平层内的第一排水管,所述第一排水管的进水口上连接有明地漏,且所述明地漏的上端面位于所述地面装饰层上;所述第一排水管的出水口连接有第二排水管,且所述第二排水管水平埋设于所述建筑结构层内;所述第二排水管的上表面开设有多个渗水孔,且所述第二排水管的上表面位于所述防水层和建筑结构层的交界处。通过在第二排水管上表面开设渗水孔,起到排水作用,有效简化安装工序,实现有效排水。

Patent Agency Ranking