基于Sentinel-1、2影像的大豆种植区识别方法

    公开(公告)号:CN115063610B

    公开(公告)日:2024-03-12

    申请号:CN202210596186.6

    申请日:2022-05-30

    Applicant: 安徽大学

    Abstract: 本发明涉及基于Sentinel‑1、2影像的大豆种植区识别方法及其面积测算方法,与现有技术相比解决了大豆与其他作物光谱相似度高导致其依靠高维特征难以实现种植区识别的缺陷。本发明包括以下步骤:Sentinel‑1、2影像的获取和预处理;时间序列特征提取;支持向量机模型的构建;优选特征子集确定;大豆种植区识别。本发明借助GEE云计算平台,利用线性谐波模型提取大豆生长季内Sentinel‑1、2影像的时间序列特征,然后构造支持向量机模型,同时结合随机森林分类模型及斯皮尔曼相关系数探究大豆识别优选特征子集,最终利用支持向量机模型提取大豆种植区并测算面积。

    一种基于LSTM与U-Net融合网络的大豆种植区遥感提取方法

    公开(公告)号:CN117612006A

    公开(公告)日:2024-02-27

    申请号:CN202311612743.X

    申请日:2023-11-29

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于LSTM与U‑Net融合网络的大豆种植区遥感提取方法,与现有技术相比解决了机器学习方法提取精度有限、模型时空泛化能力不高的缺陷。本发明包括以下步骤:Sentinel‑2影像的获取和预处理;构造反射率时间序列影像;数据集的构建;PF‑Unet模型的构建与训练;大豆种植区遥感分布图的获得。本发明通过将卷积神经网络U‑Net和长短期记忆网络LSTM融合,提出了PF‑Unet深度学习网络,可以从多个尺度提取时间序列中的特征,相比于U‑Net、LSTM和TFBS模型,大豆种植区遥感提取精度更高。

    基于国产GF-6 WFV数据的大豆种植区提取方法

    公开(公告)号:CN115063678B

    公开(公告)日:2025-04-04

    申请号:CN202210673426.8

    申请日:2022-06-15

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于国产GF‑6WFV数据的大豆种植区提取方法,包括:获取待提取区域的GF‑6WFV数据,并对数据进行预处理;采用决策树分层逐级提取策略剔除预处理后的GF‑6WFV数据中的非农作物像元,得到农田植被总体分布数据;生成候选遥感特征集合;得到优选特征集合,再进行分类器的筛选,得到最佳分类器;将优选特征集合和最佳分类器结合,获得最优提取模型,并对最优提取模型的表现进行评价,考查最优提取模型对于大豆种植区的制图效果。本发明利用决策树分层逐级提取策略,显著降低水体、建成区、裸土、树木等其他地物类型对大豆提取结果造成的干扰,有助于获取更为准确和可靠的结果;同时降低数据占用的存储空间和运算量,从而提高执行效率。

    基于国产GF-6 WFV数据的大豆种植区提取方法

    公开(公告)号:CN115063678A

    公开(公告)日:2022-09-16

    申请号:CN202210673426.8

    申请日:2022-06-15

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于国产GF‑6WFV数据的大豆种植区提取方法,包括:获取待提取区域的GF‑6WFV数据,并对数据进行预处理;采用决策树分层逐级提取策略剔除预处理后的GF‑6WFV数据中的非农作物像元,得到农田植被总体分布数据;生成候选遥感特征集合;得到优选特征集合,再进行分类器的筛选,得到最佳分类器;将优选特征集合和最佳分类器结合,获得最优提取模型,并对最优提取模型的表现进行评价,考查最优提取模型对于大豆种植区的制图效果。本发明利用决策树分层逐级提取策略,显著降低水体、建成区、裸土、树木等其他地物类型对大豆提取结果造成的干扰,有助于获取更为准确和可靠的结果;同时降低数据占用的存储空间和运算量,从而提高执行效率。

Patent Agency Ranking