-
公开(公告)号:CN110781932B
公开(公告)日:2022-03-11
申请号:CN201910971340.1
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
IPC: G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种多类别图像转换与对比的超高清片源色域检测方法,其技术特点是:构造多类别图像转换与对比的色域检测网络,用于对BT.709和BT.2020两种视频片源的色域进行检测;构建图像转换与对比层,对输入图像进行转换,增加不同类别特征间的参照和对比;使用残差网络作为初始网络,将原始输入图像和转换后的图像同时输入初始网络;对色域检测网络进行训练,得到BT.709和BT.2020两类别的色域分类模型,并由该色域分类模型图像的色域类别。本发明设计合理,对超高清视频片源的色域进行技术符合性检测,将色域检测问题归结为图像分类问题,并结合图像分类任务中的卷积神经网络,获得了很好的色域检测结果,使得系统整体检测准确率大大提升。
-
公开(公告)号:CN111669532B
公开(公告)日:2021-08-10
申请号:CN202010488758.X
申请日:2020-06-02
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种高动态范围视频端到端实现方法,其主要技术特点是:制作视频节目,得到HLG视频;对HLG视频进行编码,得到编码码流;编码码流经过不同的传输网络进行传输;接收端对接收到的传输码流进行解码处理,根据显示终端的显示能力,将HLG视频送至显示终端进行显示。本发明设计合理,其在现有基于HLG的超高清电视系统中,增加PQ动态元数据的提取和传输,如果是现有支持HLG视频的终端,直接显示;如果是支持PQ视频的终端,将HLG转换为PQ视频动态适配后显示,可以在不改变现有传输方式的基础上,实现不同显示终端的最佳还原显示功能。
-
公开(公告)号:CN110781932A
公开(公告)日:2020-02-11
申请号:CN201910971340.1
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
Abstract: 本发明涉及一种多类别图像转换与对比的超高清片源色域检测方法,其技术特点是:构造多类别图像转换与对比的色域检测网络,用于对BT.709和BT.2020两种视频片源的色域进行检测;构建图像转换与对比层,对输入图像进行转换,增加不同类别特征间的参照和对比;使用残差网络作为初始网络,将原始输入图像和转换后的图像同时输入初始网络;对色域检测网络进行训练,得到BT.709和BT.2020两类别的色域分类模型,并由该色域分类模型图像的色域类别。本发明设计合理,对超高清视频片源的色域进行技术符合性检测,将色域检测问题归结为图像分类问题,并结合图像分类任务中的卷积神经网络,获得了很好的色域检测结果,使得系统整体检测准确率大大提升。
-
公开(公告)号:CN110545416A
公开(公告)日:2019-12-06
申请号:CN201910825906.X
申请日:2019-09-03
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种基于深度学习的超高清片源检测方法,其主要技术特点是:对超高清片源进行技术符合性检测;对视频文件封装格式进行检测;对码流文件进行检测;构造色域检测的卷积神经网络模型,对视频片源的色域进行检测;构造转换曲线检测的卷积神经网络模型,对视频片源的转换曲线进行检测。本发明设计合理,其通过检测文件格式封装信息,可检测到文件头中封装的相应信息是否符合技术标准,通过检测编码后的码流信息,可检测到码流中标识的相应信息是否正确,并在片源内容特征检测上有效结合了卷积神经网络模型,可检测视频内容实际的色域类别以及测视频内容实际的转换曲线类别,获得了优良的检测结果,使得系统整体检测准确率大大提高。
-
公开(公告)号:CN110781931A
公开(公告)日:2020-02-11
申请号:CN201910971337.X
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
Abstract: 本发明涉及一种局部特征提取和融合的超高清片源转换曲线检测方法,其技术特点是:构造局部特征提取和融合的超高清片源转换曲线检测网络,构建局部特征提取和融合层,得到用于表征转换曲线特性的局部特征图;使用残差网络作为初始网络,得到整体转换曲线检测网络模型;对曲线检测网络模型进行训练,转换曲线分类模型;将超高清片源图像输入到转换曲线分类模型中,由该转换曲线分类模型输出该图像属于三种转换曲线类别的概率,最终根据概率大小判别图像的转换曲线类别。本发明设计合理,其通过构建特征提取和融合的超高清片源转换曲线检测网络模型,优于目前其他的片源检测算法,系统整体检测准确率较高。
-
公开(公告)号:CN110781931B
公开(公告)日:2022-03-08
申请号:CN201910971337.X
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
Abstract: 本发明涉及一种局部特征提取和融合的超高清片源转换曲线检测方法,其技术特点是:构造局部特征提取和融合的超高清片源转换曲线检测网络,构建局部特征提取和融合层,得到用于表征转换曲线特性的局部特征图;使用残差网络作为初始网络,得到整体转换曲线检测网络模型;对曲线检测网络模型进行训练,转换曲线分类模型;将超高清片源图像输入到转换曲线分类模型中,由该转换曲线分类模型输出该图像属于三种转换曲线类别的概率,最终根据概率大小判别图像的转换曲线类别。本发明设计合理,其通过构建特征提取和融合的超高清片源转换曲线检测网络模型,优于目前其他的片源检测算法,系统整体检测准确率较高。
-
公开(公告)号:CN110545416B
公开(公告)日:2020-10-16
申请号:CN201910825906.X
申请日:2019-09-03
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种基于深度学习的超高清片源检测方法,其主要技术特点是:对超高清片源进行技术符合性检测;对视频文件封装格式进行检测;对码流文件进行检测;构造色域检测的卷积神经网络模型,对视频片源的色域进行检测;构造转换曲线检测的卷积神经网络模型,对视频片源的转换曲线进行检测。本发明设计合理,其通过检测文件格式封装信息,可检测到文件头中封装的相应信息是否符合技术标准,通过检测编码后的码流信息,可检测到码流中标识的相应信息是否正确,并在片源内容特征检测上有效结合了卷积神经网络模型,可检测视频内容实际的色域类别以及测视频内容实际的转换曲线类别,获得了优良的检测结果,使得系统整体检测准确率大大提高。
-
公开(公告)号:CN111669532A
公开(公告)日:2020-09-15
申请号:CN202010488758.X
申请日:2020-06-02
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种高动态范围视频端到端实现方法,其主要技术特点是:制作视频节目,得到HLG视频;对HLG视频进行编码,得到编码码流;编码码流经过不同的传输网络进行传输;接收端对接收到的传输码流进行解码处理,根据显示终端的显示能力,将HLG视频送至显示终端进行显示。本发明设计合理,其在现有基于HLG的超高清电视系统中,增加PQ动态元数据的提取和传输,如果是现有支持HLG视频的终端,直接显示;如果是支持PQ视频的终端,将HLG转换为PQ视频动态适配后显示,可以在不改变现有传输方式的基础上,实现不同显示终端的最佳还原显示功能。
-
-
-
-
-
-
-