一种基于改进YOLOv8的X光安检图像危险品分割与检测系统

    公开(公告)号:CN119919664A

    公开(公告)日:2025-05-02

    申请号:CN202510018070.8

    申请日:2025-01-06

    Abstract: 本发明属于目标检测技术领域,具体涉及一种基于改进YOLOv8的X光安检图像危险品分割与检测系统。该方法依次执行以下步骤:获取X光安检图像数据集,并按比例划分为训练集和测试集;对YOLOv8‑seg架构进行改进,针对主干网络和颈部网络的卷积层进行优化,通过结合空间深度转换卷积(Space‑to‑Depth Convolution,SPD‑Conv)来增强对主干网络和颈部网络特征的提取能力,从而提高对小型目标、遮挡物体及复杂背景下危险品的分割精度,提升模型对X光安检图像危险品的检测能力。本发明通过结合SPD‑Conv模块改进YOLOv8‑seg算法,能够在复杂背景下对交通枢纽的X光安检图像中的危险品进行精确分割和检测,显著提高了检测能力,为优化安检流程提供了有力的技术支持。

    一种改进YOLOv8的X射线安检图像危险品检测系统

    公开(公告)号:CN119048878A

    公开(公告)日:2024-11-29

    申请号:CN202411061740.6

    申请日:2024-11-02

    Abstract: 本发明属于目标检测技术领域,具体涉及一种改进YOLOv8的X射线安检图像危险品检测系统;该方法依次执行以下步骤:获取X射线危险品图像数据集并进行数据增强;搭建改进的YOLO‑GEMA网络模型,包括:在YOLOv8的Backbone和Neck中添加GELAN(Generalized Efficient Layer Aggregation Network);在YOLOv8的Neck中加入EMA(Efficient Multi‑ScaleAttention)注意力机制;最后采用inner‑CIoU改进损失函数加快收敛速度。利用训练集对改进的YOLOv8模型进行训练得到X射线安检图像检测模型;利用测试集对训练好的模型进行测试得到危险品检测结果。本发明通过使用改进的YOLOv8算法进行X射线安检图像的检测,能够更加精确的检测出危险品,提高安检效率。

    一种基于改进YOLOv11的X光安检图像危险品检测系统

    公开(公告)号:CN119624939A

    公开(公告)日:2025-03-14

    申请号:CN202411833132.2

    申请日:2024-12-13

    Abstract: 本发明属于计算机视觉领域中的目标检测技术,具体涉及一种基于改进YOLOv11的X光安检图像危险品检测系统。首先将X光安检图像数据集按照6:4的比例划分为训练集与测试集,该系统基于YOLOv11架构,在主干网络结构中引入了空间和通道协同注意机制(Spatial andChannel Synergistic Attention,SCSA),其包含可共享的多语义空间注意力(Shareable Multi‑Semantic Spatial Attention,SMSA)和渐进式通道自注意力(Progressive Channel‑wise Self‑Attention,PCSA)两部分,旨在提升X光安检图像中的危险品检测性能,有效增强模型对复杂场景的理解能力,提高了对小型目标、遮挡物体及低对比度危险品的检测精度与速度。本发明通过结合SCSA模块改进YOLOv11算法,显著提升了X光安检图像中危险品检测的精度与速度,为提升公共安全和优化安检流程提供了有力的技术支持。

Patent Agency Ranking